[1] 张喜刚,刘高,马军海,等. 中国桥梁技术的现状与展望[J]. 中国公路, 2017(5):40-45.
[2] 王虎,魏祥龙. 高铁混凝土桥梁内部缺陷无损检测技术[J]. 工程建社, 2017,49(2):62-66.
[3] 张宏建,孔燕,赵启林,等. 混凝土裂缝监测与检测技术发展动态综述[J]. 现代交通技术, 2019,16(4):42-48.
[4] MOHAMMAD R J, SAMI M. Image-Based Crack Detection.USA.US13567943[P]. 2013-02-07.
[5] SANCHEZ-CUEVAS P J, HEREDIA G, OLLERO A. Multirotor UAS for bridge inspection by contact using the ceiling effect[C]// Proceedings of the 2017 International Conference on Unmanned Aircraft Systems. IEEE, 2017:767-774.
[6] JIMENEZ-CANO A E, HEREDIA G, OLLERO A. Aerial manipulator with a compliant arm for bridge inspection[C]// Proceedings of the 2017 International Conference on Unmanned Aircraft Systems. IEEE, 2017:1217-1222.
[7] PRABAKAR C V, NAGARAJAN C K. A novel approach of surface crack detection using super pixel segmentation[J]. Materials Today: Proceedings, 2021,42(2):1043-1049.
[8] 倪彤元,周若虚,杨杨,等. 基于智能手机APP的图像法检测混凝土表面裂缝研究[J]. 计量学报, 2021,42(2):163-170.
[9] 陈立潮,张媛媛,秦宇强,等. 基于图像处理的隧道裂缝安全预警[J]. 计算机工程与设计, 2020,41(12):3479-3484.
[10]马东群,李宝林,王秋月,等. 一种基于桥梁横向裂缝的病害识别方法[J]. 计算机与现代化, 2021(1):43-49.
[11]罗伟,梁世豪,姜鑫,等. 基于深度学习的野外露头区岩石裂缝识别[J]. 计算机与现代化, 2020(5):56-62.
[12]WANG S, WU X, ZHANG Y h, et al. A neural network ensemble method for effective crack segmentation using fully convolutional networks and multi-scale structured forests[J]. Machine Vision and Applications, 2020,31(7-8):16-30.
[13]王耀东,朱力强,余祖俊,等. 基于样本自动标注的隧道裂缝病害智能识别研究[J]. 西南交通大学学报, 2021(7):1-8.
[14]黄彩萍,甘书宽,谭金甲,等. 基于深度学习的混凝土表观病害智能分类器[J]. 华中科技大学学报(自然科学版), 2021,49(4):96-101.
[15]赵鹏,赵雪峰,赵庆安,等. 基于人工智能机器视觉技术的古建筑表层损伤检测[J]. 物联网技术, 2017(9):14-18.
[16]赵雪峰,李生元,欧进萍. 基于人工智能与智能手机的混凝土裂纹检测[J]. 物联技术, 2017(8):15-18.
[17]陈晓冬,艾大航,张佳琛,等. Gabor滤波融合卷积神经网络的路面裂缝检测方法[J]. 中国光学, 2020,13(6):1293-1301.
[18]SATTAR D, THOMAS R J, MARC M. Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete[J]. Construction and Building Materials, 2018,186:1031-1045.
[19]温作林. 基于深度学习的混凝土裂缝识别[D]. 杭州:浙江大学, 2019.
[20]DENG J H, LU Y, LEE V C S. Imaging-based crack detection on concrete surfaces using you only look once network[J]. Structural Health Monitoring, 2021,20(2):484-499.
[21]张振华,陆金桂. 基于改进卷积神经网络的混凝土桥梁裂缝检测[J]. 计算机仿真, 2021,38(11):490-494.
[22]尚欣茹,温尧乐,奚雪峰,等. 孪生导向锚框RPN网络实时目标跟踪[J]. 中国图象图形学报, 2021,26(2):415-424.
[23]李承昊,茹乐,何林远,等. 一种可变锚框候选区域网络的目标检测方法[J]. 北京航空航天大学学报, 2020,46(8):1610-1617.
[24]陈运忠. 基于特征融合和自适应锚框的目标检测算法研究[D]. 郑州:河南大学,2020.
[25]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). 2016:779-788.
[26]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[27]GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision(ICCV). 2015:1440-1448.
[28]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(6):1137-1149.
[29]李太文,范昕炜. 基于Faster R-CNN的道路裂缝识别[J]. 电子技术应用, 2020,46(7):53-56.
|