计算机与现代化 ›› 2022, Vol. 0 ›› Issue (10): 68-74.

• 图像处理 • 上一篇    下一篇

细粒度图像分类的通道自适应判别性学习方法

  

  1. (江西科技师范大学通信与电子学院,江西南昌330013)
  • 出版日期:2022-10-20 发布日期:2022-10-21
  • 作者简介:杨贞(1985—),男,江西南昌人,讲师,博士,研究方向:模式识别,图像处理,E-mail: yangzhenphd@aliyun.com; 单孟姣(1994—),女,河南许昌人,硕士研究生,研究方向:图像分类,E-mail: 506602231@qq.com; 殷志坚(1968—),男,江西南昌人,教授,硕士,研究方向:模式识别,E-mail: zhijianyin@aliyun.com; 杨凡(1982—),男,江西南昌人,副教授,博士,研究方向:生物信息,E-mail: 13845100@qq.com; 李翠梅(1967—),女,江西南昌人,教授,本科,研究方向:信号处理,E-mail: 996506207@qq.com。
  • 基金资助:
    系统控制与信息处理教育部重点实验室开放课题(Scip202106); 国家自然科学基金资助项目(62061019); 江西省自然科学基金资助项目(20212BAB202013); 江西省教育厅项目(GJJ201107); 江西科技师范大学校级自然科学重点培育基金资助项目(2017ZDPYJD005)

Fine-grained Image Classification via Channel Adaptive Discriminative Learning

  1. (School of Communication and Electronics, Jiangxi Science and Technology Normal University, Nanchang 330013, China)
  • Online:2022-10-20 Published:2022-10-21

摘要: 由于类内差异大且类间差异小,因此细粒度图像分类极具挑战性。鉴于深层特征具有很强的特征表示能力,而中层特征又能有效地补充全局特征在图像细粒度识别中的缺失信息,因此,为了充分利用卷积层的特征,本文提出细粒度图像分类的通道自适应判别性学习方法:首先在通道方向上聚集中级特征以获取目标位置;然后对通过感兴趣区域特征交互级联得到的信息进行分类;最后进行端到端的训练,无需任何边界框和零件注释。在CUB-200-2011、Stanford Cars和FGVC-Aircraft这3个公共数据集上开展大量实验,与其他方法相比,本文方法既可以保持简单性和推理效率又可提升分类准确度。

关键词: 细粒度图像分类, 通道自适应, 掩模, 特征增强, 感兴趣区域

Abstract: Fine-grained image classification is very challenging due to the limited amount of data with large intra-class differences and small inter-class differences. Since the deep features have strong feature representation capability and the middle layer features can effectively supplement the missing information of the global-level features in fine-grained image identification, in order to take advantages of the convolutional layer feature, this paper proposes a channel adaptive discriminative learning method for fine-grained image classification. In this method, the intermediate features are first aggregated in the channel direction to capture the target position, and then we classify the information obtained by the interactive cascade of the region of interest features. Finally, the proposed method can perform end-to-end training without any bounding box and part annotation. A large number of experiments on three common fine-grained image classification datasets (CUB-200-2011, Stanford Cars and FGVC-Aircraft) have shown that this method can not only maintain simple and reasonable efficiency, but also improve the accuracy, compared with the other methods.

Key words: fine-grained image classification, channel adaptive, mask, feature enhancement, interested area