计算机与现代化 ›› 2022, Vol. 0 ›› Issue (10): 62-67.

• 软件工程 • 上一篇    下一篇

面向海量植物图像的智能检索系统设计

  

  1. (中国科学院昆明植物研究所科技信息中心,云南昆明650201)
  • 出版日期:2022-10-20 发布日期:2022-10-21
  • 作者简介:邱金水(1987—),男,广东韶关人,高级工程师,硕士,研究方向:软件工程,植物科学大数据,E-mail: qiujinshui@mail.kib.ac.cn; 通信作者:庄会富(1985—),男,山东日照人,高级工程师,博士,研究方向:信息化,植物科学大数据,E-mail: zhuanghuifu@mail.kib.ac.cn; 金涛(1987—),男,云南昆明人,工程师,硕士,研究方向:网络工程,植物科学大数据,E-mail: jintao@mail.kib.ac.cn。
  • 基金资助:
    中国科学院网络安全和信息化专项(CAS-WX2022SDC-SJ01); 云南省生物资源数字化开发应用项目(202002AA100007); 中国科学院青年创新促进会会员支持项目(2022397)

Design of Intelligent Retrieval System for Massive Plant Images

  1. (Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China)
  • Online:2022-10-20 Published:2022-10-21

摘要: 针对传统软件技术设计的植物图像检索系统中存在无法实现智能检索、植物图像数量增长慢、检索系统难以扩容,以及当植物图像数量达到百万级以上时检索效率低和检索请求高并发时植物图像加载慢等问题,提出利用百度AI技术、ImageSharp图像分割技术和CV2颜色识别技术实现植物图像的智能检索。利用FastDFS技术实现检索系统的动态扩容、负载均衡和植物图像的快速加载,利用Solr搜索引擎技术提高海量植物图像的检索效率,利用Python爬虫技术不断丰富检索系统的植物图像从而实现检索系统的可持续化发展。实验结果表明,通过上述技术能够构建一个面向海量植物图像的智能检索系统。

关键词: 植物图像, 检索系统, 大数据, 人工智能, 分布式存储, 搜索引擎, 网络爬虫

Abstract: In view of the problems of the plant image retrieval system designed by traditional software technology, such as unable to realize intelligent retrieval, slow growth of the number of plant images, difficult expansion of the retrieval system, low retrieval efficiency when the number of plant images reaches more than one million, and slow loading of plant images when the retrieval requests are highly concurrent, Baidu AI technology, image segmentation technology ImageSharp and color recognition technology CV2 are used to realize intelligent retrieval of plant images. FastDFS technology is used to realize the dynamic expansion, load balancing and rapid loading of plant images of the retrieval system, Solr search engine technology is used to improve the retrieval efficiency of massive plant images, and Python crawler technology is used to continuously enrich the plant images of the retrieval system, so as to realize the sustainable development of the retrieval system. The experimental results show that the above technology can build an intelligent retrieval system for massive plant images.

Key words: plant image, retrieval system, big data, artificial intelligence, distributed storage, search engine, Web crawler