[1] 殷开梁. 分子动力学模拟的若干基础应用和理论[D]. 杭州:浙江大学, 2006.
[2] HOLLINGSWORTH S, DROR R. Molecular dynamics simulation for all[J]. Neuron, 2018,99(6):1129-1143.
[3] KARPLUS M, MCCAMMON J. Molecular dynamics simulations of biomolecules[J]. Nature Structural Biology, 2002,9(9):646-652.
[4] HOSPITAL A, GOI J R, OROZCO M, et al. Molecular dynamics simulations: Advances and applications[J]. Advances and Applications in Bioinformatics and Chemistry, 2015,8:37-47.
[5] WANG H Q, PENG S L, ZHU X Q, et al. A method to accelerate GROMACS in offload mode on Tianhe-2 supercomputer[C]// 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 2015:781-784.
[6] CHIU M, KHAN M A, HERBORDT M C. Efficient calculation of pairwise nonbonded forces[C]// 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom Computing Machines. 2011:73-76.
[7] WU C S, GENG T, YANG C, et al. A communication-efficient multi-chip design for range-limited molecular dynamics[C]// 2020 IEEE High Performance Extreme Computing Conference (HPEC). 2020:1-8.
[8] BROWN W M, WANG P, PLIMPTONS J, et al. Implementing molecular dynamics on hybrid high performance computers-short range forces[J]. Computer Physics Communications, 2011,182(4):898-911.
[9] GLASER J, NGUYEN T D, ANDERSON J A, et al. Strong scaling of general-purpose molecular dynamics simulations on GPUs[J]. Computer Physics Communications, 2015,192:97-107.
[10]ALAM S R, AGARWAL P K, SMITH M C, et al. Using FPGA devices to accelerate biomolecular simulations[J]. Computer, 2007,40(3):66-73.
[11]郭禾,龙珠,王宇新,等. 基于FPGA的分子动力学模拟系统设计[J]. 微电子学与计算机, 2009,26(8):246-248.
[12]YANG C, GENG T, WANG T Q, et al. Fully integrated FPGA molecular dynamics simulations[C]// Proceedings of the 2019 International Conference for High Performance Computing, Networking, Storage and Analysis. 2019:1-31.
[13]GU Y F, VANCOURT T, HERBORDT M C. Accelerating molecular dynamics simulations with configurable circuits[J]. IEE Proceedings-Computers and Digital Techniques, 2006,153(3):189-195.
[14]SHAW D E, GROSSMAN J P, BANK J A, et al. Anton 2: Raising the bar for performance and programmability in a special-purpose molecular dynamics supercomputer[C]// Proceedings of the 2014 International Conference for High Performance Computing, Networking, Storage and Analysis. 2014:41-53.
[15]KASAP S, BENKRID K. Parallel processor design and implementation for molecular dynamics simulations on a FPGA-based supercomputer[J]. Journal of Computers, 2012,7(6):1312-1328.
[16]王海强. 天河2号上CPU/MIC协同的分子动力学模拟软件GROMACS并行加速技术研究[D]. 长沙:国防科学技术大学, 2015.
[17]KASAP S, BENKRID K. A high performance implementation for molecular dynamics simulations on a FPGA supercomputer[C]// 2011 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). 2011:375-382.
[18]LARSON R H, SALMON J K, DRORR O, et al. High-throughput pairwise point interactions in Anton, a specialized machine for molecular dynamics simulation[C]// Proceedings of the 14th International Symposium on High Performance Computer Architecture. 2008:331-342.
[19]CHIU M, HERBORDT M C. Molecular dynamics simulations on high-performance reconfigurable computing systems[J]. ACM Transactions on Reconfigurable Technology and Systems (TRETS), 2010,3(4):1-37.
[20]WU C, GENG T, BANDARA S, et al. Upgrade of FPGA range-limited molecular dynamics to handle hundreds of processors[C]// Proceedings of the 29th IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM). 2021:142-151.
[21]SHAW D E, DROR R O, SALMON J K, et al. Millisecond-scale molecular dynamics simulations on Anton[C]// Proceedings of the 2009 Conference on High Performance Computing Networking, Storage and Analysis. 2009:1-11.
[22]GROSSMAN J P, TOWLES B, GRESKAMP B, et al. Filtering, reductions and synchronization in the Anton 2 network[C]// Proceedings of the 29th International Parallel and Distributed Processing Symposium. 2015:860-870.
[23]CHIU M, HERBORDT M C. Towards production FPGA-accelerated molecular dynamics: Progress and challenges[C]// Proceedings of 2010 4th International Workshop on High Performance Reconfigurable Computing Technology and Applications (HPRCTA). 2010:1-8.
[24]YAO Z, WANG J S, LIU G R, et al. Improved neighbor list algorithm in molecular simulations using cell decomposition and data sorting method[J]. Computer Physics Communi-cations, 2004,161(1-2):27-35.
[25]SHAW D E. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions[J]. Journal of Computational Chemistry, 2005,26(13):1318-1328.
[26]ANDOH Y, YOSHII N, FUJIMOTO K, et al. MODYLAS: A highly parallelized general-purpose molecular dynamics simulation program for large-scale systems with long-range forces calculated by fast multipole method (FMM) and highly scalable fine-grained new parallel processing algorithms[J]. Journal of Chemical Theory and Computation, 2013,9(7):3201-3209.
[27]KHAN M A, CHIU M, HERBORDT M C. FPGA-accelerated molecular dynamics[M]// High-Performance Computing Using FPGAs. Springer, 2013:105-135.
[28]YANG C,GENG T, WANG T Q, et al. Molecular dynamics range-limited force evaluation optimized for FPGAs[C]// Proceedings of the 30th International Conference on Application-specific Systems, Architectures and Processors (ASAP). 2019:263-271.
|