[1] QING H H, ZHANG J L, FU D. Data of E-commerce users based on data mining technology[J]. Journal of Physics: Conference Series, 2021,1852(2):37-43.
[2] 周雪. 基于网络日志的用户行为分析与研究[D]. 北京:北京邮电大学, 2017.
[3] 李志强. 基于网络日志的用户行为分析[D]. 北京:北京理工大学, 2016.
[4] 齐文,朱曦源,宋杰. 基于特征转移概率的网络日志聚类分析算法[J/OL]. 小型微型计算机系统,2022:1-9[2022-01-19]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=XXWX20220111004&uniplatform=NZKPT&v=eJPY4GCzLtR_TxGllFOfv-acYcZgZojdg82bFWhlB81YC7X7jFz9tt72jLglyJTv.
[5] 管楚. 基于行为分析的用户能力挖掘[D]. 合肥:中国科学技术大学, 2017.
[6] 王艺林. OA系统用户行为分析方法研究[D]. 合肥:国防科技大学, 2017.
[7] 谢智颖,何原荣,李清泉. 基于时空相关性的公交大数据清洗[J]. 计算机工程与应用, 2022,58(1):113-121.
[8] XIONG T L, MA Z S, LI Z Z, et al. The analysis of influence mechanism for Internet financial fraud identification and user behavior based on machine learning approaches[J]. International Journal of System Assurance Engineering and Management, 2021. DOI:10.1007/s13198-021-01181-0.
[9] HAN S, KIM H. Optimal feature set size in random forest regression[J]. Applied Sciences, 2021,11(8):1-13.
[10]田浩兵,朱嘉钢,陆晓. 基于特征贡献度加权高斯核函数的粗糙one-class支持向量机[J]. 计算机科学, 2015,42(6):239-242.
[11]崔北亮,周小康,李树青. 融合遗漏项目侧面特征的相似度计算方法研究与应用[J]. 南京邮电大学学报(自然科学版), 2021,41(4):59-66.
[12]秦帅,张乾,赵强,等. 基于特征线法计算的超细群慢化方程求解方法[J]. 原子能科学技术, 2019,53(12):2420-2427.
[13]MUKMININ U S, IRAWANTO B, SURARSO B, et al. Fuzzy time series based on frequency density-based partitioning and K-means clustering for forecasting exchange rate[J]. Journal of Physics: Conference Series, 2021,1943(1):121-130.
[14]张春祥,周雪松,高雪瑶,等. 融合k均值聚类与LSTM网络的半监督词义消歧[J]. 西安电子科技大学学报, 2021(6):161-171.
[15]GONG W R, PANG L H, WANG J, et al. A social-aware K means clustering algorithm for D2D multicast communication under SDN architecture[J]. AEUE-International Journal of Electronics and Communications, 2021,132(3):135-142.
[16]ASOGBON M G, SAMUEL O W, JIANG Y B, et al. Appropriate feature set and window parameters selection for efficient motion intent characterization towards intelligently smart EMG-PR system[J]. Symmetry, 2020,12(10):1-20.
[17]NAIR L R, SUBRAMANIAM K, PRASANNA VENKATESAN G K D. An effective image retrieval system using machine learning and fuzzy c- means clustering approach[J]. Multimedia Tools and Applications, 2019,79:10123-10140.
[18]LATA K, SINGH P, DUTTAK. Machine learning-artificial intelligence; report summarizes artificial intelligence study findings from national institute of technology hamirpur (a comprehensive review on feature set used for anaphora resolution)[J]. Journal of Robotics & Machine Learning, 2020,35(4):2917-3006.
[19]杨倩倩. 基于Actor-Critic机制的情感特征提取方法的研究与实现[D]. 北京:北京邮电大学, 2021.
[20]江彦桥. 视听觉信息特征提取与融合方法研究[D]. 成都:电子科技大学, 2021.
[21]王迪,袁三一,袁焕,等. 基于自适应阈值约束的无监督聚类智能速度拾取[J]. 地球物理学报, 2021,64(3):1048-1060.
[22]MEGHANA M J. K-means clustering for enhanced search engine optimization: A data-driven approach[J]. Journal of Research in Science and Engineering, 2021,3(4):1-5
[23]荀超,陈伯建,吴翔宇,等. 基于改进K-means算法的电力短期负荷预测方法研究[J/OL].电力科学与技术学报,2022(6):90-95[2022-01-17]. http://kns.cnki.net/kcms/detail/43.1475.TM.20211224.1808.002.html.
[24]任瑾璇,麻淑婉,王永华,等. 面向鲁棒频谱感知的模糊K-means++算法[J/OL]. 电讯技术, 2021:1-8[2022-01-17]. http://kns.cnki.net/kcms/detail/51.1267.TN.20211230.1909.012.html.
[25]吕伟杰,方一帆,程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022,46(1):231-238.
[26]李毓照,闫浩文,杨维芳,等. 基于模糊聚类分析法的BDS长基线模糊度解算[J]. 大地测量与地球动力学, 2021,41(10):1040-1044.
[27]王瑞,陈诗雯,逯静. 基于模糊聚类的BOA-SVR分时段精细化短期负荷预测[J]. 武汉大学学报(工学版), 2021,54(12):1140-1149.
|