[1] |
李明熹,林正奎,曲毅. 计算机视觉下的车辆目标检测算法综述[J]. 计算机工程与应用, 2019,55(24):20-28.
|
[2] |
TSAI D M, LAI S C. Independent component analysis-based background subtraction for indoor surveillance[J]. IEEE Transactions on Image Processing, 2009,18(1):158-167.
|
[3] |
LEE D S. Effective gaussian mixture learning for video background subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(5):827-832.
|
[4] |
HORN B K, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981,17(1-3):185-203.
|
[5] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
|
[6] |
GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
|
[7] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
|
[8] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
|
[9] |
REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
|
[10] |
REDMON J, FARHADI A. YOLO v3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
|
[11] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLO v4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv:2004.10934, 2020.
|
[12] |
WOO S Y, PARK J C, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:3-19.
|
[13] |
MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]// Proceedings of the 15th Berkeley Symposium on Mathematical Statistics and Probability. 1967:281-297.
|
[14] |
HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
|
[15] |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:8759-8768.
|
[16] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
|
[17] |
IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// 2015 International Conference on Machine Learning. 2015:448-456.
|
[18] |
MISRA D. Mish: A self regularized non-monotonic neural activation function[J]. arXiv preprint arXiv:1908.08681, 2019.
|
[19] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
|
[20] |
ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:2921-2929.
|
[21] |
LIN M, CHEN Q, YAN S. Network in network[J]. arXiv preprint arXiv:1312.4400, 2013.
|
[22] |
TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-Mixer: An all-MLP architecture for vision[J]. arXiv preprint arXiv:2105.01601, 2021.
|
[23] |
SUTSKEVER I, MARTENS J, DAHL G, et al. On the importance of initialization and momentum in deep learning[C]// Proceedings of the 30th International Conference on Machine Learning. 2013:1139-1147.
|
[24] |
ROBBINS H, MONRO S. A Stochastic Approximation Method[M]. Springer, 1985:400-407.
|
[25] |
KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
|
[26] |
JIANG B R, LUO R X, MAO J Y, et al. Acquisition of localization confidence for accurate object detection[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:784-799.
|
[27] |
DANIELSSON P E. Euclidean distance mapping[J]. Computer Graphics and Image Processing, 1980,14(3):227-248.
|
[28] |
YU F, XIAN W Q, CHEN Y Y, et al. Bdd100k: A diverse driving video database with scalable annotation tooling[J]. arXiv preprint arXiv:1805.04687, 2018.
|
[29] |
NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]// 2006 18th International Conference on Pattern Recognition. 2006:850-855.
|
[30] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,42:2011-2023.
|
[31] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// 2016 European Conference on Computer Vision. 2016:21-37.
|