[1] 胡立. 基于深度学习的高铁接触网绝缘子图像分析技术研究[D]. 杭州:浙江大学, 2020.
[2] 刘欢. 电力线路无人机巡检图像的目标检测与缺陷识别[D]. 武汉:华中科技大学, 2019.
[3] 任文文. 基于卷积神经网络的航拍绝缘子图像的检测与提取应用研究[D]. 马鞍山:安徽工业大学, 2018.
[4] 荀子扬. 基于无人机视觉的绝缘子缺陷识别检测研究[D]. 哈尔滨:东北农业大学, 2018.
[5] SOUS C L, 宋泽天. 绝缘子的污秽类型:由季节变化和积污时间造成的污秽堆集[J]. 电瓷避雷器译丛, 1991(36):47-53.
[6] 黄青丹,陆国俊,李柳云,等. 广州地区输电线路绝缘子污秽成分分析[J]. 高压电器, 2013(2):85-91.
[7] TAN P, LI X F, XU J M, et al. Catenary insulator defect detection based on contour features and gray similarity matching[J]. Journal of Zhejiang University Science A:Applied Physics & Engineering, 2020,21(1):64-73.
[8] 危双丰,黄帅,曹文博,等. 基于航拍影像的输电线路绝缘子识别及缺陷检测[J]. 工程勘察, 2020,48(4):39-43.
[9] ZHANG Q, LI W T, LI H, et al. Self-blast state detection of glass insulators based on stochastic configuration networks and a feedback transfer learning mechanism[J]. Information Sciences, 2020,552:259-274.
[10]姜云土,韩军,丁建,等. 基于多特征融合的玻璃绝缘子识别及自爆缺陷的诊断[J]. 中国电力, 2017,50(5):52-58.
[11]刘昶忻,李目. 基于深度可分离卷积网络的航拍绝缘子检测[J]. 机电信息, 2021(2):43-45.
[12]蒋姗,孙渊,严道森. 基于深度学习算法的航拍巡检图像的绝缘子识别[J]. 福州大学学报(自然科学版), 2021,49(1):58-64.
[13]尧新亮,柯坚. 基于YOLOv3和ECO算法的电气化铁路接触网绝缘子的检测与跟踪[J]. 铁道标准设计, 2021(9):154-160.
[14]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(6):1137-1149.
[15]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:779-788.
[16]ARTHUR D, VASSILVITSLII S. K-means++: The advantages of careful seeding[C]// Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. 2007:1027-1035.
[17]邱洁,乐文强,黄军胜. 大疆Phantom4 RTK无人机航测在工程中的应用[J]. 企业科技与发展, 2019(6):134-135.
[18]唐泽亮,吴永明. 无人机电力巡检中定位绝缘子的方法[J]. 机电工程技术, 2017,46(8):172-176.
[19]韩正新,乔耀华,孙阳,等. 基于图像识别的无人机输电线路绝缘子故障检测方法研究[J]. 现代电子技术, 2017,40(22):179-181.
[20]冯晓硕,沈樾,王冬琦. 基于图像的数据增强方法发展现状综述[J]. 计算机科学与应用, 2021,11(2):370-382.
[21]GIRSHICK R, DONAHUE J, DARRELL T, et al. Region-based convolutional networks for accurate object detection and segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016,38(1):142-158.
[22]GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[23]REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[24]DUAN K W, BAI S, XIE L X, et al. Centernet: Keypoint triplets for object detection[C]// Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. 2019:6568-6577.
[25]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// 2016 European Conference on Computer Vision. 2016:21-37.
[26]REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:658-666.
[27]ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. 2020:12993-13000.
|