[1] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986,8(6):679-698.
[2] OTSU N. Threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979,9(1):62-66.〖HJ1.33mm〗
[3] 李清泉,邹勤,毛庆洲. 基于最小代价路径搜索的路面裂缝检测[J]. 中国公路学报, 2010,23(6):28-33.
[4] PRASANNA P, DANA K J, GUCUNSKI N, et al. Automated crack detection on concrete bridges[J]. IEEE Transactions on Automation Science and Engineering, 2016,13(2):591-599.
[5] ZOU Q, CAO Y, LI Q Q, et al. Crack tree: Automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012,33(3):227-238.
[6] LIAO T Y. On-line vehicle routing problems for carbon emissions reduction[J]. Computer-aided Civil and Infrastructure Engineering, 2017,32(1):1047-1063.
[7] YANG X C, LI H, YU Y T, et al. Automatic pixel-aided crack detection and measurement using fully convolutional network[J]. Computer-aided Civil and Infrastructure Engineering, 2018,33(12):1090-1109.
[8] LAI S L, LEE D H, WU J H, et al. Detecting the cracks and seepage line associated with an earthquake in an earth dam using the nondestructive testing technologies[J]. Journal of the Chinese Institute of Engineers, 2014,37(4):428-437.
[9] LIU W J, HUANG Y C, LI Y, et al. FPCNet: Fast pavement crack detection network based on encoder-decoder architecture[J]. arXiv preprint arXiv, 1907.02248, 2019.
[10]LI S Y, ZHAO X F, ZHOU G Y. Automatic pixel-level multiple damage detection of concrete structure using fully convolutional network[J]. Computer-aided Civil and Infrastructure Engineering, 2019,34(7):616-634.
[11]王健,胥燕军,汪力,等. 机器视觉在钢轨磨耗检测中的应用研究[J]. 铁道标准设计, 2014(9):36-39.
[12]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//2012 Advances in Neural Information Processing Systems. 2012:1097-1105.
[13]SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[14]CHA Y J, CHOI W, BYKZTRK O. Deep learning-based crack damage detection using convolutional neural networks[J]. Computer-aided Civil and Infrastructure Engineering, 2017,32(5):361-378.
[15]GIBB S, LA H M, LOUIS S. A genetic algorithm for convolutional network structure optimization for concrete crack detection[C]// 2018 IEEE Congress on Evolutionary Computation(CEC). 2018:1-8.
[16]李岩,杨豪杰,刘辉,等. 基于深度学习的混凝土裂缝检测研究[J]. 信息技术与信息化, 2021(12):233-236.
[17]李良福,王楠,武彪,等. 基于改进PSPNet的桥梁裂缝图像分割算法[J]. 激光与光电子学进展, 2021,58(22):93-101.
[18]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39:640-651.
[19]RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. 2015:234-241.
[20]张果荣. 基于深度学习的道路裂缝检测研究[D]. 南京:南京信息工程大学, 2021.
[21]朱苏雅,杜建超,李云松,等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019,49(4):35-42.
[22]SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016,17(12):3434-3445.
[23]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[24]IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on International Conference on Machine. 2015:448-456.
[25]XU B, WANG N Y, CHEN T Q, et al. Empirical Evaluation of rectified activations in convolutional network[J]. arXiv preprint arXiv:1505.00853, 2015.
[26]PASZKE A, GROSS S, MASSA F, et al. PyTorch: An imperative style, high-performance deep learning library[J]. Advances in Neural Information Processing Systems, 2019,32:8026-8037.
[27]ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6230-6239.
[28]BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39:2481-2495.
|