[1] 王良玮,陈梅,李晖,等. DF-SSD:一种基于反卷积和特征融合的单阶段小目标检测算法[J]. 计算机与现代化, 2021(6):8-23.
[2] 张冬明,靳国庆,代锋,等. 基于深度融合的显著性目标检测算法[J]. 计算机学报, 2019,42(9):2076-2086.
[3] 寇大磊,权冀川,张仲伟. 基于深度学习的目标检测框架进展研究[J]. 计算机工程与应用, 2019,55(11):25-34.
[4] 周苏,支雪磊,刘懂,等. 基于卷积神经网络的小目标交通标志检测算法[J]. 同济大学学报(自然科学版), 2019,47(11):1626-1632.
[5] 胡伏原,李林燕,尚欣茹,等. 基于卷积神经网络的目标检测算法综述[J]. 苏州科技大学学报(自然科学版), 2020,37(2):1-10.
[6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Feature hierarchies for accurate object detection and semantic segmentation[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[7] GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. 2015:1440-1448.
[8] REN S Q, HE K M, GIRSHICK R. Faster R-CNN: Towards real-time object detection with regionproposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[9] HE K M, GKIOXARL G, DOLLR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision. 2017:2980-2988.
[10]DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networds[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:379-387.
[11]REDMON J, DIVVALA S, GIRSHICK R, et al. You Only Look Once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[12]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// 2016 European Conference on Computer Vision. 2016:21-37.
[13]刘恋,谭台哲. 基于CNN算法的交通标志检测与识别[J]. 现代计算机, 2020(18):81-84.
[14]LEE H S, KIM K. Simultaneous traffic sign detection and boundary estimation using convolutional neural network[J]. IEEE Transactions on Intelligent Transportation System, 2018,19(5):1652-1663.
[15]王宪保,朱啸咏,姚明海. 基于改进Faster RCNN的目标检测方法[J]. 高技术通讯, 2021,31(5):489-499.
[16]李兆坤,李思尚,胡晓斌. 基于YOLO v3的实时目标检测技术研究[J]. 信息与电脑, 2020,32(23):33-35.
[17]REDMON J, FARHADI A. YOLO 9000: Better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[18]李志刚,张娜. 一种轻量型YOLOv5交通标志识别方法[J/OL]. 电讯技术:1-7(2021-12-31)[2022-01-15]. https://kns.cnki.net/kcms/detail/51.1267.tn.20211230.1940.014.html.
[19]刘非. 基于YOLOv4-tiny的交通标志检测[J]. 信息技术与信息化, 2021(5):18-20.
[20]胡伟. 改进的层次K均值聚类算法[J]. 计算机工程与应用, 2013,49(2):157-159.
[21]熊开玲,彭俊杰,杨晓飞,等. 基于核密度估计的K-means聚类优化[J]. 计算机技术与发展, 2017,27(2):1-5.
[22]王勇,唐婧,饶勤菲,等. 高效的K-means最佳聚类数确定算法[J]. 计算机应用, 2014,34(5):1331-1335.
[23]刘洋,姜涛,段学鹏. 基于YOLO v3的复杂天气条件下人车识别方法的研究[J]. 长春理工大学学报(自然科学版), 2020,43(6):57-65.
[24]CSDN. 图片标注工具LabelImg下载安装使用教程[EB/OL].(2018-04-46)[2021-12-01]. https://blog.csdn.net/m0_38139979/article/details/79958823.
|