[1] JURIE F, DHOME M. Real time robust template matching[C]// Proceedings of the British Machine Vision Conference 2002:123-132.
[2] BRUNELLI R. Template Matching Techniques in Computer Vision: Theory and Practice[M]. Wiley, 2009.
[3] TALMI I, MECHREZ R, ZELNIK-MANOR L. Template matching with deformable diversity similarity[C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:175-183.
[4] KORMAN S, REICHMAN D, TSUR G, et al. Fast-match: Fast affine template matching[C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. 2013:2331-2338.
[5] ORON S, DEKEL T, XUE T F, et al. Best-buddies similarity:Robust template matching using mutual nearest neighbors[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40(8):1799-1813.
[6] SPRATLING M W. Explaining away results in accurate and tolerant template matching[J].Pattern Recognition, 2020,104. DOI: 10.1016/j.patcog.2020.107337.
[7] 邹进贵,万荧,孟丽媛. 一种基于自适应权重SAD与Census融合的匹配算法[J]. 测绘通报, 2018,17(11):11-15.
[8] YANG H, HUANG C H, WANG F Y, et al. Robust semantic template matching using a superpixel region binary descriptor[J]. IEEE Transactions on Image Processing, 2019,28(6):3061-3074.
[9] 朱江,孙家广,邹北骥,等. 电气原理图的自动识别[J]. 计算机工程与科学, 2007,29(1):56-58.
[10]谷彩连. 电力工程图纸典型图元自动识别技术研究[D]. 沈阳:沈阳农业大学, 2006.
[11]陈晓杰,方贵盛. 一种基于图元结构关系的电气草图图元识别方法[J]. 机电工程, 2017,34(8):823-828.
[12]肖豆,侯晓荣. 基于PHOG特征的电路图中电气图元识别[J]. 舰船电子工程, 2017,37(1):90-93.
[13]王玉豪,方贵盛. 基于DAGSVM和决策树的电气草图图元识别[J]. 轻工机械, 2017,35(4):56-59.
[14]JADERBERG M, SIMONYAN K, VEDALDI A, et al. Reading text in the wild with convolutional neural networks[J]. International Journal of Computer Vision, 2016,116:1-20.
[15]姚砺,王昭丽. 基于深度学习的驾驶证识别方法研究[J]. 智能计算机与应用, 2020,10(7):40-43.
[16]YIN Y, ZHANG W, HONG S, et al. Deep learning-aided OCR techniques for Chinese uppercase characters in the application of internet of things[J]. IEEE Access, 2019,7:47043-47049.
[17]SHI B G, BAI X, YAO C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,39(11):2298-2304.
[18]WEINMAN J, CHEN Z W, GAFFORD B, et al. Deep neural networks for text detection and recognition in historical maps[C]// 2019 International Conference on Document Analysis and Recognition (ICDAR). 2019. DOI: 10.1109/ICDAR.2019.00149.
[19]冯海. 基于深度学习的中文OCR算法与系统实现[D]. 北京:中国科学院大学, 2019.
[20]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[21]LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[22]KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012,25(2):1106-1114.
[23]Google. Tesseract OCR[EB/OL]. [2021-05-10].https://github.com/tesseract-ocr/tesseract/.
|