[1] NHTSA. Distracted driving [EB/OL]. (2016-10-09)[2021-05-17]. https://www.nhtsa.gov/risky-driving/distracted-driving.
[2] 周欣,刘硕迪,潘薇,等. 自然交通场景中的车辆颜色识别[J]. 计算机科学, 2021,48(S1):15-20.
[3] KUTILA M H, JOKELA M, MAKINEN T, et al. Driver cognitive distraction detection: Feature estimation and implementation[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2007,221(9):1027-1040.
[4] OHN-BAR E, MARTIN S, TAWARI A, et al. Head, eye, and hand patterns for driver activity recognition[C]// 2014 22nd International Conference on Pattern Recognition. 2014:660-665.
[5] REZAEI M, KLETTE R. Look at the driver, look at the road: No distraction! No accident![C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:129-136.
[6] KOHLMOEGEN J, DORNHEGE G, BRAUN M L, et al. Improving Human Performance in a Real Operating Environment through Real-Time Mental Workload Detection[M]. MIT Press, 2007:409-422.
[7] ZANDER T O, KOTHE C. Towards passive brain-computer interfaces: Applying brain-computer interface technology to human-machine systems in general[J]. Journal of Neural Engineering, 2011,8(2). DOI: 10.1088/1741-2560/8/2/025005.
[8] WANG Y K, CHEN S A, LIN C T. An EEG-based brain-computer interface for dual task driving detection[J]. Neurocomputing, 2014,129:85-93.
[9] ZHANG C, WANG H, FU R R. Automated detection of driver fatigue based on entropy and complexity measures[J]. IEEE Transportation Intelligent Transportation Systems, 2014,15(1):168-177.
[10]WANG S Y, ZHANG Y Q, WU C X, et al. Online prediction of driver distraction based on brain activity patterns[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(1):136-150.
[11]YAN C, COENEN F, ZHANG B L. Driving posture recognition by convolutional neural networks[J]. IET Computer Vision, 2016,10(2):103-114.
[12]LE T H N, ZHENG Y T, ZHU C C, et al. Multiple scale faster-RCNN approach to driver’s cell-phone usage and hands on steering wheel detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2016:46-53.
[13]TRAN D, DO H, LU J X, et al. Real-time detection of distracted driving using dual cameras[C]// 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2020:2014-2019.
[14]崔华.白杰.毕欣.等. 具有多个级联输出层的深度神经网络[J]. 同济大学学报(自然科学版), 2017,45(S1):19-23.
[15]XIONG Q F, LIN J, YUE W, et al. A deep learning approach to driver distraction detection of using mobile phone[C]// 2019 IEEE Vehicle Power and Propulsion Conference (VPPC). 2019. DOI: 10.1109/VPPC46532.2019.8952474.
[16]陈军,张黎,周博,等. 基于级联卷积神经网络的驾驶员分心驾驶行为检测[J]. 科学技术与工程, 2020,20(14):5702-5708.
[17]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[18]GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1440-1448.
[19]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[20]REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[21]LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// Proceedings of the 2016 European Conference on Computer Vision. 2016:21-37.
[22]LI J L, HOU Q S, XING J S, et al. SSD object detection model based on multi-frequency feature theory[J]. IEEE Access, 2020,8:82294-82305.
[23]ZHAI S P, SHANG D R, WANG S H, et al. DF-SSD: An improved SSD object detection algorithm based on denseNet and feature fusion[J]. IEEE Access, 2020,8:24344-24357.
[24]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]// Proceedings of the 2012 Conference and Workshop on Neural Information Processing Systems (NIPS). 2012:1097-1105.
[25]HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:770-778.
[26]HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[J]. arXiv preprint arXiv: 1704.04861, 2017.
[27]SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2018:4510-4520.
|