[1] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics. 2014:655-665.
[2] SHEN D H, ZHANG Y Z, HENAO R, et al. Deconvolutional latent-variable model for text sequence matching[C]// The 32nd AAAI Conference on Artificial Intelligence. 2018,32(1).
[3] WU H Y, LIU Y, SHI S Y. Modularized syntactic neural networks for sentence classification[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020. DOI: 10.18653/v1/2020.emnlp-main.222.
[4] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[5] 朱雪晨,陈三林,蔡刚,等. 降低参数规模的卷积神经网络模型压缩方法[J]. 计算机与现代化, 2021(9):83-89.
[6] 刘奇旭,刘心宇,罗成,等. 基于双向循环神经网络的安卓浏览器指纹识别方法[J]. 计算机研究与发展, 2020,57(11):2294-2311.
[7] 夏瑜潞. 循环神经网络的发展综述[J]. 电脑知识与技术, 2019,15(21):182-184.
[8] 石磊,王明宇,宋哲理,等.自注意力机制和BiGRU相结合的文本分类研究[J/OL]. 小型微型计算机系统:1-10[2021-11-18]. https://kns-cnki-net.webvpn.ecut.edu.cn/kcms/detail/21.1106.TP.20211102.1155.010.html.
[9] 罗嘉,王乐豪,涂姗姗,等. 基于LSTM-BLS的突发气象灾害事件中公众情感倾向分析[J/OL]. 南京信息工程大学学报(自然科学版):1-13[2021-06-30]. https://kns-cnki-net.webvpn.ecut.edu.cn/kcms/detail/32.1801.N.20210628.1426.002.html.
[10]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[11]DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv: 1810.04805, 2018.
[12]SUN C, QIU X P, XU Y G, et al. How to fine-tune BERT for text classification?[C]// 2019 China National Conference on Chinese Computational Linguistics. 2019:194-206.
[13]JIAO X Q, YIN Y C, SHANG L F, et al. TinyBERT: Distilling BERT for natural language understanding[J]. arXiv preprint arXiv:1909.10351, 2019.
[14]BAHDANAU D, CHO K, BENGIO Y.Neural machine translation by jointly learning to align and translate[C]// The 3rd International Conference on Learning Representations. 2015.
[15]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
[16]马月梅,陈海英,刘国军. 彩色图像质量评价的广义平均池化策[J]. 激光与光电子学进展, 2018,55(2):206-213.
[17]刘国军,高丽霞,陈丽奇. 广义平均的全参考型图像质量评价池化策略[J]. 光学精密工程, 2017,25(3):742-748.
[18]王静. 基于最大池化的图双注意力网络研究及应用[D]. 石家庄:河北师范大学, 2020.
[19]SHU B, REN F J, BAO Y W. Investigating LSTM with K-Max pooling for text classification[C]// 2018 11th International Conference on Intelligent Computation Technology and Automation (ICICTA). 2018:31-34.
[20]ZHOU P, QI Z Y, ZHENG S C, et al. Text classification improved by integrating bidirectional LSTM with two-dimensional max pooling[J]. arXiv preprint arXiv:1611.06639, 2016.
[21]CONNEAU A, SCHWENK H, BARRAULT L, et al. Very deep convolutional networks for text classification[J]. arXiv preprint arXiv:1606.01781, 2016.
[22]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014,15(1):1929-1958.
[23]KINGAD P,BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[24]LIU Y H, OTT M, GOYAL N, et al. RoBERTa: A robustly optimized bert pretraining approach[J]. arXiv preprint arXiv:1907.11692, 2019.
[25]LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: A lite BERT for self-supervised learning of language representations[J]. arXiv preprint arXiv: 1909.11942, 2019.
[26]JOSHI M, CHEN D Q, LIU Y H, et al. SpanBERT: Improving pre-training by representing and predicting spans[J]. Transactions of the Association for Computational Linguistics, 2020,8:64-77.
[27]SUN Y, WANG S H, LI Y K, et al. ERNIE: Enhanced representation through knowledge integration[J]. arXiv preprint arXiv:1904.09223, 2019.
|