[1] ZHAO Y, SHI H B, CHEN X W, et al. An overview of object detection and tracking[C]// Proceedings of the 2015 IEEE International Conference on Information and Automation. 2015:280-286.
[2] 汪济洲,鲁昌华,蒋薇薇. 一种基于嵌入空间的防遮挡的多目标跟踪算法[J]. 电子测量与仪器学报, 2016,30(2):318-322.
[3] 武江鹏,乔明军,闫振纲,等. 战斗部破片场参数测试技术发展综述[J]. 兵器装备工程学报, 2019,40(5):105-109.
[4] 龚卫国,王旭,李正浩. 一种抗遮挡的红外多目标实时检测跟踪算法[J]. 仪器仪表学报, 2014,35(3):535-542.
[5] 刘鑫,金晅宏. 四帧间差分与光流法结合的目标检测及追踪[J]. 光电工程, 2018,45(8):30-37.
[6] 袁国武,陈志强,龚建,等. 一种结合光流法与三帧差分法的运动目标检测算法[J]. 小型微型计算机系统, 2013,34(3):668-671.
[7] 杨冬冬,常丹华,韩夏,等. 运动目标检测与跟踪算法的改进与实现[J]. 激光与红外, 2010,40(2):205-209.
[8] 张雄,苑惠娟,于佳. 基于序列图像的运动目标检测与跟踪[J]. 信息技术, 2009,33(8):111-113.
[9] 郭保青,杨柳旭,史红梅,等. 基于快速背景差分的高速铁路异物侵入检测算法[J]. 仪器仪表学报, 2016,37(6):1371-1378.
[10]姚倩,安世全,姚路. 三帧差法和Mean-shift结合的行人检测与跟踪研究[J]. 计算机工程与设计, 2014,35(1):223-227.
[11]袁国武. 智能视频监控中的运动目标检测和跟踪算法研究[D]. 昆明:云南大学, 2012.
[12]高凯亮,覃团发,王逸之,等. 一种基于帧差法与背景减法的运动目标检测新方法[J]. 电讯技术, 2011,51(10):86-91.
[13]熊永敬,张启鹏,黄应翔,等. 局部帧差校验改进背景消除法的目标检测算法[J]. 中国工程机械学报, 2020,18(1):24-28.
[14]张聪炫,陈震,熊帆,等. 非刚性稠密匹配大位移运动光流估计[J]. 电子学报, 2019,47(6):1316-1323.
[15]朱璐瑶. 改进的Horn-Schunck光流法在目标追踪中的应用[J]. 中国体视学与图像分析, 2015,20(3):218-226.
[16]黄杭. 基于光流法的运动目标检测与跟踪[D]. 沈阳:东北大学, 2014.
[17]荆滢,齐乃新,杨小冈,等. 基于LK和FAST的时间序列图像快速配准算法[J]. 红外与激光工程, 2018,47(11):462-470.
[18]WU N, HARUYAMA S. Real-time sound detection and regeneration based on optical flow algorithm of laser speckle images[C]// Proceedings of the 2019 28th Wireless and Optical Communications Conference. 2019:96-99.
[19]管飞,王荣. 基于Horn-Schunck光流法的运动目标检测的研究[J]. 仪表技术, 2015(2):43-45.
[20]邵绪强,杨艳,刘艺林. 流体运动估计光流算法研究综述[J]. 中国图象图形学报, 2021,26(2):355-367.
[21]QIN L L, YU N W, ZHAO D H. Applying the convolutional neural network deep learning technology to behavioural recognition in intelligent video[J]. Technical Gazette, 2018,25(2):528-535.
[22]LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]// Proceedings of the 7th International Joint Conference on Artificial Intelligence. 1981,2:674-679.
[23]HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981,17(1-3):185-203.
[24]BRUHN A, WEICKERT J, SCHNORR C. Combining the advantages of local and global optic flow methods[M]// Joint Pattern Recognition Symposium. Springer, 2002:454-462.
[25]ZHAO J, BAO Y Q, GUAN Z G, et al. Video-based multiscale identification approach for tower vibration of a cable-stayed bridge model under earthquake ground motions[J]. Structural Control and Health Monitoring, 2019,26(3). DOI: 10.1002/stc.2314.
[26]SUN D Q, YANG X D, LIU M Y, et al. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:8934-8943.
[27]DONG C Z, CELIK O, CATBAS F N, et al. Structural displacement monitoring using deep learning-based full field optical flow methods[J]. Structure and Infrastructure Engineering, 2020,16(1):51-71.
|