计算机与现代化 ›› 2022, Vol. 0 ›› Issue (03): 103-110.

• 算法设计与分析 • 上一篇    下一篇

基于图过滤框架对图卷积滤波器灵活性的研究

  

  1. (1.湖北大学计算机与信息工程学院,湖北武汉430062;2.湖北省应用数学重点实验室,湖北武汉430062)
  • 出版日期:2022-04-29 发布日期:2022-04-29
  • 作者简介:徐鑫强(1998—),男,四川成都人,本科生,研究方向:图嵌入学习,E-mail: mail_xxq@163.com; 何鹏(1988—),男,副教授,博士,研究方向:面向服务的软件工程,软件质量分析和缺陷预测。
  • 基金资助:
    国家重点研究发展计划项目(2018YFB1003801); 国家自然科学基金资助项目(61832014,61902114); 湖北省应用数学重点实验室项目(HBAM201901)

Enhance Flexibility of Graph Convolutional Filter Based on Graph Filter Framework

  1. (1. School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China;

    2. Hubei Key Laboratory of Applied Mathematics, Hubei University, Wuhan 430062, China)
  • Online:2022-04-29 Published:2022-04-29

摘要: 图卷积神经网络通过特征传播,学习卷积核,实现图卷积,它的核心在于卷积算子的构建。在应用具体的图数据时,卷积核的适用性往往因应用场景的不同而受到限制。本文从图过滤的角度看待卷积核,在图过滤框架下,视结点的数据特征为图信号,应用低通滤波器对其进行平滑处理,将提取的平滑图信号放在拓扑图上进行谱域中的卷积。在此过程中,局部的图结构信息将被整合进结点的相似度表征中以完成图嵌入学习。为了提高图形滤波器的灵活性,实现更精细的设计,在原有模型的基础上,本文引入新的平移参数,从而在不增加神经网络的可训练权重数量的情况下,也可以轻松控制滤波器的平滑力度以满足各种场景的滤波需求,其作用机理则是控制频率响应函数的水平位移。通过在3个引文网络和1个知识图谱上设置多种参数值执行图嵌入学习的任务,本文验证了引入平衡参数的有效性,并从图划分的角度对此提出了更为全面的见解。

关键词: 图信号, 图卷积神经网络, 低通滤波器, 平滑力度, 图划分, 平衡参数

Abstract: Graph convolutional networks learn the convolution kernels through feature propagation to achieve graph convolution. Its core lies in the construction of the convolution operator. When applied to specific graph data, the applications of convolution kernels are often limited due to the difference of scenarios. This paper addresses the convolution kernels from a graph filtering perspective. Under the graph filtering framework, the data features of nodes are regarded as graph signals, and the smooth signals are processed by low-pass filter. The extracted smooth graph signals are placed on topographic map for convolution in spectral domain. In this process, the local graph structure information will be integrated into the similarity representation of the nodes to complete the graph embedding learning. In order to improve the flexibility of the graphics filter and achieve more detailed design, this paper naturally extends the original model and introduces a new balance parameter, which can easily control the smoothness of the filter to meet the filtering requirements of various application scenarios without increasing the number of trainable weights of the neural network, and its mechanism is to control the horizontal displacement of the frequency response function. By setting a variety of parameter values on three citation networks and a knowledge graph to perform the task of graph embedding learning, this paper verifies the effectiveness of introducing the balance parameter and proposes a more comprehensive view from the perspective of graph partition.

Key words: graph signal, graph convolutional network, low-pass filter, smoothness, graph partition, balance parameter