[1]PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: Online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014:701-710.
[2] CAO S S, LU W, XU Q K. GraRep: Learning graph representations with global structural information[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management. 2015:891-900.
[3] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. Machine Learning, arXiv preprint arXiv:1609.02907, 2016.
[4] LI Q M, WU X M, LIU H, et al. Label efficient semi-supervised learning via graph filtering[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:9574-9583.
[5] SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013,30(3):83-98.
[6] ZHU X J, GOLDBERG A. Introduction to semi-supervised learning[J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009,3(1):1-130.
[7] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016:3844-3852.
[8] BANDEIRA A S, SINGER A, SPIELMAN D A. A cheeger inequality for the graph connection laplacian[J]. SIAM Journal on Matrix Analysis and Applications, 2013,34(4):1611-1630.
[9] LEE J R, GHARAN S D, TREVISAN L. Multiway Spectral Partitioning and higher-order cheeger inequalities[J]. JACM, 2014,61(6):37.
[10]ZHANG J, DONG Y X, WANG Y, et al. ProNE: Fast and scalable network representation learning[C]// The 28th International Joint Conference on Artificial Intelligence. 2019:4278-4284.
[11]SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008,29(3):93-106.
[12]CARLSON A, BETTERIDGE J, KISIEL B, et al. Toward an architecture for never-ending language learning[C]// Proceedings of the 24th AAAI Conference on Artificial Intelligence. 2010:1306-1313.
[13]YANG Z L, COHEN W, SALAKHUTDINOV R. Revisiting semi-supervised learning with graph embeddings[C]// International Conference on Machine Learning (ICML). 2016:40-48.
[14]CHUNG F R. Spectral graph theory[J]. CBMS Regional Conference Series in Mathematics, 1997,92:DOI:https://doi.org/10.1090/cbms/092.
[15]BELKIN M, NIYOGI P. Semi-supervised learning on riemannian manifolds[J]. Machine Learning, 2004,56(1):209-239.
[16]CHAPELLE O, WESTON J, SCHOLKOPF B. Cluster kernels for semi-supervised learning[C]// Advances in Neural Information Processing Systems. 2003:601-608.
[17]ZHANG T, ANDO R. Analysis of spectral kernel design based semi-supervised learning[C]// Advances in Neural Information Processing Systems. 2005:1601-1608.
[18]BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[J]. Machine Learning, arXiv preprint arXiv:1312.6203, 2014.
[19]HENAFF M, BRUNA J, LECUN Y. Deep convolutional networks on graph-structured data[J]. Machine Learning,arXiv preprint arXiv:1506.05163, 2015.
[20]SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440.
[21]MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:5425-5434.
[22]XU B B, SHEN H W, CAO Q, et al. Graph wavelet neural network[J]. Machine Learning, arXiv preprint arXiv:1904.07785, 2019.
[23]HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011,30(2):129-150.
[24]SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]// Proceedings of the European Semantic Web Conference. 2018:593-607.
[25]ATWOOD J, TOWSLEY D. Diffusion-convolutional neural networks[C]// Advances in Neural Information Processing Systems. 2016:1993-2001.
[26]VASHISHTH S, YADAV P, BHANDARI M, et al. Confidence-based graph convolutional networks for semi-supervised learning[C]// Proceedings of the 2019 International Conference on Artificial Intelligence and Statistics. 2019:1792-1801.
[27]HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]// Advances in Neural Information Processing Systems. 2017:1024-1034.
[28]VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. Machine Learning, arXiv preprint arXiv:1710.10903, 2018.
[29]THEKUMPARAMPIL K K, WANG C, OH S, et al. Attention-based graph neural network for semi-supervised learning[J]. Machine Learning, arXiv preprint arXiv:1803.03735, 2018.
[30]LIAO R, BROCKSCHMIDT M, TARLOW D, et al. Graph partition neural networks for semisupervised classification[J]. Machine Learning, arXiv preprint arXiv:1803.06272, 2018.
[31]CHEN J, MA T F, XIAO C. Fastgcn: Fast learning with graph convolutional networks via importance sampling[J]. Machine Learning, arXiv preprint arXiv:1801.10247, 2018.
[32]ZHUANG C Y, MA Q. Dual graph convolutional networks for graph-based semi-supervised classification[C]// Proceedings of the 2018 World Wide Web Conference. 2018:499-508.
[33]CHEN J F, ZHU J, SONG L. Stochastic training of graph convolutional networks with variance reduction[C]// International Conference on Machine Learning, 2018:941-949.
[34]ZHANG Y X, PAL S, COATES M, et al. Bayesian graph convolutional neural networks for semi-supervised classification[J]. Machine Learning, arXiv preprint arXiv:1811.11103, 2018.
[35]VELI P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[J]. Machine Learning, arXiv preprint arXiv:1809.10341, 2018.
[36]LIAO R J, ZHAO Z Z, URTASUN R, et al. Lanczosnet: Multi-scale deep graph convolutional networks[J]. Machine Learning, arXiv preprint arXiv:1901.01484, 2019.
|