[1] BUSONERA G, COGONI M, PULIGHEDDU M, et al. EEG spectral coherence analysis in nocturnal epilepsy[J]. IEEE Transactions on Biomedical Engineering, 2018,65(12):2713-2719.
[2] KORKALAINEN H, AAKKO J, NIKKONEN S, et al. Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep apnea[J]. IEEE Journal of Biomedical and Health Informatics, 2020,24(7):2073-2081.
[3] YANG B, LIU H. Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ECG signals[J]. IEEE Access, 2020,8:104281.
[4] ESTRADA E, NAZERAN H, NAVA P, et al. EEG feature extraction for classification of sleep stages[C]// Proceedings of the 26th Annual International Conference of the IEEE EMBS. 2004,1:196-199.
[5] WULFF K, GATTI S, WETTSTEIN J G, et al. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease[J]. Nature Reviews Neuroscience, 2010,11(8):589-599.
[6] EBRAHIMI F, MIKAEILI M, ESTRADA E, et al. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients[C]// 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2008:1151-1154.
[7] 罗志增,李亚飞,孟明,等. 脑电信号的混沌分析和小波包变换特征提取算法[J]. 仪器仪表学报, 2011,32(1):33-39.
[8] 范文兵,刘雪峰,赵艳阳. 基于单通道脑电信号的自动睡眠分期[J]. 计算机应用, 2017,37(z2):318-321.
[9] ALICKOVIC E, SUBASI A. Ensemble SVM method for automatic sleep stage classification[J]. IEEE Transactions on Instrumentation and Measurement, 2018,67(6):1258-1265.
[10]BASHA A J, BALAJI B S, POORNIMA S, et al. Support vector machine and simple recurrent network based automatic sleep stage classification of fuzzy kernel[J]. Journal of Ambient Intelligence and Humanized Computing, 2021,12:6189-6197.
[11]TSINALIS O, MATTHEWS P M, GUO Y K, et al. Automatic sleep stage scoring with single-channel EEG using convolutional neural networks[J]. arXiv preprint arXiv:1610.01683, 2016.
[12]WEI L J, LIN Y F, WANG J, et al. Time-frequency convolutional neural network for automatic sleep stage classification based on single-channel EEG[C]// 2017 IEEE 29th International Conference on Tools with Artificial Intelligence(ICTAI). 2017:88-95.
[13]ANDREOTTI F, PHAN H, COORAY N, et al. Multichannel sleep stage classification and transfer learning using convolutional neural networks[C]// 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2018:171-174.
[14]SUN C L, CHEN C, FAN J H, et al. A hierarchical sequential neural network with feature fusion for sleep staging based on EOG and RR signals[J]. Journal of Neural Engineering, 2019,16(6):066020.
[15]LIU Y, FAN R T, LIU Y C. Deep identity confusion for automatic sleep staging based on single-channel EEG[C]// 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks(MSN). 2018:134-139.
[16]SUPRATAK A, DONG H, WU C, et al. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017,25(11):1998-2008.
[17]HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997,9(8):1735-1780.
[18]GERS F A, SCHMIDHUBER J, CUMMINS F. Learning to forget: Continual prediction with LSTM[J]. Neural Computation, 2000,12(10):2451-71.
[19]MINH D L, SADEGHI-NIARAKI A, HUY H D, et al. Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network[J]. IEEE Access, 2018,6:55392-55404.
[20]NIROSHANA I S M, ZHU X, CHEN Y, et al. Sleep stage classification based on EEG, EOG, and CNN-GRU deep learning model[C]// 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST). 2019:1-7.
[21]CHEN J X, JIANG D M, ZHANG Y N. A hierarchical bidirectional GRU model with attention for EEG-based emotion classification[J]. IEEE Access, 2019,7:118530-118540.
[22]CHUNG J Y, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. arXiv preprint arXiv:1412.3555, 2014.
[23]CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002,16:341-378.
|