[1] LI L Q, CHEN X A, ZHOU H L, et al. Recognition and application of infrared thermal image among power facilities based on YOLO[C]// 2019 Chinese Control and Decision Conference (CCDC). 2019:5939-5943.
[2] 刘沅昆,栾文鹏,徐岩,等. 针对配电变压器的数据清洗方法[J]. 电网技术, 2017,41(3):1008-1014.
[3] 贾京龙,余涛,吴子杰,等. 基于卷积神经网络的变压器故障诊断方法[J]. 电测与仪表, 2017,54(13):62-67.
[4] 王保义,杨韵洁,张少敏. 改进BP神经网络的SVM变压器故障诊断[J]. 电测与仪表, 2019,56(19):53-58.〖HJ0.44mm〗
[5] 赵洪山,张则言,孟航,等. 基于高压绝缘套管纹理特征的红外目标检测[J]. 红外技术, 2021,43(3):258-265.
[6] CHRISTINA A J, SALAM M A, RAHMAN Q M, et al. Investigation of failure of high voltage bushing at power transformer[J]. Journal of Electrostatics, 2018,96:49-56.
[7] 刘齐,王茂军,高强,等. 基于红外成像技术的电气设备故障检测[J]. 电测与仪表, 2019,56(10):122-126.
[8] 邹辉,黄福珍. 基于改进FAsT-Match算法的电力设备红外图像多目标定位[J]. 中国电机工程学报, 2017,37(2):591-598.
[9] 冯振新,周东国,江翼,等. 基于改进MSER算法的电力设备红外故障区域提取方法[J]. 电力系统保护与控制, 2019,47(5):123-128.
[10]周念成,廖建权,王强钢,等. 深度学习在智能电网中的应用现状分析与展望[J]. 电力系统自动化, 2019,43(4):180-191.
[11]张宇航,邱才明,杨帆,等. 深度学习在电网图像数据及时空数据中的应用综述[J]. 电网技术, 2019,43(6):1865-1873.
[12]郭敬东,陈彬,王仁书,等. 基于YOLO的无人机电力线路杆塔巡检图像实时检测[J]. 中国电力, 2019,52(7):17-23.
[13]ZHAO H S, ZHANG Z Y. Improving neural network detection accuracy of electric power bushings in infrared images by hough transform[J]. Sensors, 2020,20(10).DOI:10.3390/s20102931.
[14]林刚,王波,彭辉,等. 基于改进Faster-RCNN的输电线巡检图像多目标检测及定位[J]. 电力自动化设备, 2019,39(5):213-218.
[15]马鹏,樊艳芳. 基于深度迁移学习的小样本智能变电站电力设备部件检测[J]. 电网技术, 2020,44(3):1148-1159.
[16]李瑞生,许丹,翟登辉,等. 基于HSV特征变换与目标检测的变压器呼吸器缺陷智能识别方法[J]. 高电压技术, 2020,46(9):3027-3034.〖HJ0.45mm〗
[17]REZATOFIGHI H, TSOI N, GWAK J Y, et al. Generalized intersection over union: A metric and a loss for bounding box regression[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019:658-666.
[18]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:2999-3007.
[19]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[20]REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017:6517-6525.
[21]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems. 2015:91-99.
[22]NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]// 18th International Conference on Pattern Recognition. 2006,3:850-855.
[23]WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:3-19.
[24]HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[25]EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The Pascal visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015,11(1):98-136.
|