[1] JIA H M, LANG C B, OLIVA D, et al. Hybrid grasshopper optimization algorithm and differential evolution for multilevel satellite image segmentation[J]. Remote Sensing, 2019,11(9). DOI: 10.3390/rs11091134.
[2] KOTTE S, PULLAKURA K R, INJETI S K. Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization[J]. Measurement, 2018,130:340-361.
[3] ZHANG X N, YAO M, ZHU F, et al. Traffic image segmentation based on Gaussian mixture model with spatial information and sampling[J]. Applied Mechanics and Materials, 2013,380-384:3702-3705.
[4] 贾鹤鸣,李瑶,姜子超,等. 基于改进共生生物搜索算法的林火图像多阈值分割[J/OL]. [2021-03-04]. 计算机应用, http://kns.cnki.net/kcms/detail/51.1307.TP.20201209.1623.022.html.
[5] PUN T. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Signal Processing, 1980,2(3):223-237.
[6] KAPUR J N, SAHOO P K, WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram[J]. Computer Vision, Graphics, and Image Processing, 1985,29(3):273-285.
[7] LI C H, LEE C K. Segmentation of die patterns using minimum cross entropy[C]// Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation. 1992:721-724.
[8] LI C H, LEE C K. Minimum cross entropy thresholding[J]. Pattern Recognition, 1993,26(4):617-625.
[9] SAHOO P, WILKINS C, YEAGER J. Threshold selection using Renyi’s entropy[J]. Pattern Recognition, 1997,30(1):71-84.
[10]PORTES DE ALBUQUERQUE M, ESQUEF I A, GESUALDI MELLO A R, et al. Image thresholding using Tsallis entropy[J]. Pattern Recognition Letters, 2004,25(9):1059-1065.
[11]曹建农. 基于直方图重构的极大交叉熵图像分割方法[J]. 计算机应用, 2011,31(12):3373-3377.
[12]PARE S, BHANDARI A K, KUMAR A, et al. A new technique for multilevel color image thresholding based on modified fuzzy entropy and Lévy flight firefly algorithm[J]. Computers & Electrical Engineering, 2018,70:476-495.
[13]OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979,9(1):62-66
[14]SATHYA P D, KAYALVIZHI R. Modified bacterial foraging algorithm based multilevel thresholding for image segmentation[J]. Engineering Applications of Artificial Intelligence, 2011,24(4):595-615.
[15]KHAIRUZZAMAN A K M, CHAUDHURY S. Multilevel thresholding using grey wolf optimizer for image segmentation[J]. Expert Systems with Applications, 2017,86:64-76.
[16]XING Z K. An improved emperor penguin optimization based multilevel thresholding for color image segmentation[J]. Knowledge-Based Systems, 2020,194. DOI: 10.1016/j.knosys.2020.105570.
[17]RODRGUEZ-ESPARZA E, ZANELLA-CALZADA L A, OLIVA D, et al. An efficient Harris hawks-inspired image segmentation method[J]. Expert Systems with Applications, 2020,155. DOI:10.1016/j.eswa.2020.113428.
[18]张新明,程金凤,康强,等. 改进的混合蛙跳算法及其在多阈值图像分割中的应用[J]. 计算机科学, 2018,45(8):54-62.
[19]彭浩,和丽芳. 基于改进树种算法的彩色图像多阈值分割[J]. 计算机科学, 2020,47(S1):220-225.
[20]YAPICI H, CETINKAYA N. A new meta-heuristic optimizer: Pathfinder algorithm[J]. Applied Soft Computing, 2019,78:545-568.
[21]滕志军,吕金玲,郭力文,等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018,50(11):40-49.
[22]韩斐斐,刘升. 基于自适应t分布变异的缎蓝园丁鸟优化算法[J]. 微电子学与计算机, 2018,35(8):117-121.
[23]MIRJALILI S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015,89:228-249.
[24]MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014,69:46-61.
|