[1] 佚名. The black death in the fourteenth century[J]. The Medico-Chirurgical Review, 1833,19(37).
[2] MAGRATH G B, BRINCKERHOFF W R. On the occurrence of cytoryctes variolae, Guarnieri, in the skin of the monkey inoculated with variola virus[J]. The Journal of Medical Research, 1904,11(1).
[3] 罗会明,余文周,温宁,等. 中国脊髓灰质炎疫苗使用历史回顾及免疫策略调整建议[J]. 中国疫苗和免疫, 2014,20(2):172-176.
[4] 姚堃. SARS相关冠状病毒的研究进展[J]. 南京医科大学学报(自然科学版), 2003,23(4):295-298.
[5] EMOND R T, EVANS B, BOWEN E T, et al. A case of Ebola virus infection[J]. British Medical Journal, 1977,2:541-544.
[6] LONG Q X, TANG X J, SHI Q L, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections.[J]. Nature Medicine, 2020,26:1200-1204.
[7] BERNOULLI D. Essai d’〖KG-*3〗une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l’inoculation pour la prévenir[M]// Mémoires de Mathématiques et de Physique. Paris:Academie Royale des Sciences, 1766.
[8] KERMACK W O, MCKENDICK A G. A contributions to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London, Series A, 1927,115(772):700-721.
[9] EL-DOMA M. Analysis of an age-dependent SI epidemic model with disease-induced mortality and proportionate mixing assumption: The case of vertically transmitted diseases[J]. Journal of Applied Mathematics, 2004(3):235-253.
[10]IANNELLI M, KIM M Y, PARK E J. Asymptotic behavior for an SIS epidemic model and its approximation[J]. Nonlinear Analysis,1999,35(7).
[11]SCHWARTZ I B, SMITH H L. Infinite subharmonic bifurcation in an SEIR epidemic model[J]. Journal of Mathematical Biology, 1983,18(3):233-253.
[12]ARON J L. Acquired immunity dependent upon exposure in an SIRS epidemic model[J]. Mathematical Biosciences, 1988,88(1):37-47.
[13]FITZGIBBON W E, PARROTT M E, WEBB G F. A diffusive age-structured SEIRS epidemic model[J]. Methods and Applications of Analysis, 1996,3(3):358-369.
[14]MELESSE D Y, GUMEL A B. Global asymptotic properties of an SEIRS model with multiple infectious stages[J]. Journal of Mathematical Analysis and Applications, 2010,366(1):202-217.
[15]廖列法,孟祥茂. 复杂网络上具有多感染阶段的传染病传播模型[J]. 计算机应用, 2014,34(11):3254-3257.
[16]李海燕,韦煜明,彭华勤. 具有双疾病的随机SIRS传染病模型的灭绝性与持久性分析[J]. 广西师范大学学报(自然科学版), 2020,38(2):144-155.
[17]豆中丽,王锐. 一类具有垂直传染率的SIS模型的稳定性分析[J]. 数学的实践与认识, 2020,50(1):324-328.
[18]李淑一,韦煜明,彭华勤. 含Ornstein-Uhlenbeck过程的随机SIS传染病模型[J]. 广西师范大学学报(自然科学版), 2020,38(4):74-81.
[19]瞿倩倩,韩华. 基于个体异质传染率及状态转移的SIR模型分析[J]. 计算机科学, 2019,46(12):327-333.
[20]牛伟纳,张小松,杨国武,等. 具有异构感染率的僵尸网络建模与分析[J]. 计算机科学, 2018,45(7):135-138.
[21]余雷,薛惠锋,高晓燕,等. 基于元胞自动机的传染病传播模型研究[J]. 计算机工程与应用, 2007(2):196-198.
[22]瞿毅臻,李琦,甘杰夫. 基于Repast平台的SARS传播仿真建模研究[J]. 计算机科学, 2008(2):286-288.
[23]LU Y K, GENG Y N, GAN W, et al. Impacts of conformist on vaccination campaign in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2019,526:121124.
[24]谢丽,赵培忻,丁海欣. 新发突发传染病驱动的谣言传播建模与仿真——双重网络下的研究[J]. 现代情报, 2020,40(10):22-33.
|