[1] LE-ANH T, DE KOSTER M B M. A review of design and control of automated guided vehicle systems[J]. European Journal of Operational Research, 2006,171(1):1-23.
[2] VIS I F A. Survey of research in the design and control of automated guided vehicle systems[J]. European Journal of Operational Research, 2006,170(3):677-709.
[3] 王娟,陈世超,王林丽,等. 基于CiteSpace的教育大数据研究热点与趋势分析[J]. 现代教育技术, 2016,26(2):5-13.
[4] YU D J. A scientometrics review on aggregation operator research[J]. Scientometrics, 2015,105(1):115-133.
[5] YOSHIKANE F. Multiple regression analysis of a patent’s citation frequency and quantitative characteristics: The case of Japanese patents[J]. Scientometrics, 2013,96(1):365-379.
[6] EBRAHIM N A, SALEHI H, EMBI M A, et al. Effective strategies for increasing citation frequency[J]. International Education Studies, 2013,6(11):93-99.
[7] FREEMAN L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977,40(1):35-41.
[8] QIAN G. Scientometric sorting by importance for literatures on life cycle assessments and some related methodological discussions[J]. The International Journal of Life Cycle Assessment, 2014,19(7):1462-1467.
[9] 卞永明,马逍阳,高飞,等. 基于改进A-Star算法的AGV全局路径规划[J]. 机电一体化, 2019,25(6):9-15.
[10]王中玉,曾国辉,黄勃,等. 改进A~*算法的机器人全局最优路径规划[J]. 计算机应用, 2019,39(9):2517-2522.
[11]张旭,程传奇,郝向阳,等. 一种兼顾全局与局部特性的机器人动态路径规划算法[J]. 测绘科学技术学报, 2018,35(3):315-320.
[12]苑光明,翟云飞,丁承君,等. 基于改进遗传算法的AGV路径规划[J]. 北京联合大学学报, 2018,32(1):65-69.
[13]王雷,李明. 改进自适应遗传算法在移动机器人路径规划中的应用[J]. 南京理工大学学报, 2017,41(5):627-633.
[14]刘二辉,姚锡凡,蓝宏宇,等. 基于改进遗传算法的自动导引小车动态路径规划及其实现[J]. 计算机集成制造系统, 2018,24(6):1455-1467.
[15]夏谦,雷勇,叶小勇. 遗传算法在AGV全局路径优化中的应用[J]. 四川大学学报(自然科学版), 2008,45(5):1129-1136.
[16]李庆中,顾伟康,叶秀清. 基于遗传算法的移动机器人动态避障路径规划方法[J]. 模式识别与人工智能, 2002,15(2):161-165.
[17]刘二辉,姚锡凡. 基于改进遗传算法的自动导引小车路径规划及其实现平台[J]. 计算机集成制造系统, 2017,23(3):465-472.
[18]陈亮,陈君若. 基于改进遗传算法的移动机器人路径规划[J]. 软件导刊, 2019,18(4):24-27.
[19]郑海丽,谢宏. 基于AGV的智能停车场路径规划与调度算法研究[J]. 现代计算机, 2018(17):23-27.
[20]孟冲,任彧. 基于多种群遗传算法的多AGV调度[J]. 电子科技, 2018,31(11):47-50.
[21]付建林,张恒志,张剑,等. 自动导引车调度优化研究综述[J]. 系统仿真学报, 2020,32(9):1664-1675.
[22]贺丽娜,楼佩煌,钱晓明,等. 基于时间窗的自动导引车无碰撞路径规划[J]. 计算机集成制造系统, 2010,16(12):2630-2634.
[23]贺丽娜. AGV系统运行路径优化技术研究[D]. 南京:南京航空航天大学, 2011.
[24]胡彬,王冰,王春香,等. 一种基于时间窗的自动导引车动态路径规划方法[J]. 上海交通大学学报, 2012,46(6):967-971.
[25]泰应鹏,邢科新,林叶贵,等. 多AGV路径规划方法研究[J]. 计算机科学, 2017,44(11A):84-87.
[26]张峥炜,陈波,陈卫东. 时间窗约束下的AGV动态路径规划[J]. 微型电脑应用, 2016,32(11):46-49.
[27]唐天晓. 激光导航自动导引小车控制系统研制[D]. 淮南:安徽理工大学, 2018.
[28]路程. 激光导引AGV样机研制[D]. 合肥:合肥工业大学, 2016.
[29]ULUSOY G, BILGE U. Simultaneous scheduling of machines and automated guided vehicles[J]. International Journal of Production Research, 1993,31:2857-2873.
[30]BILGE U, ULUSOY G. A time window approach to simultaneous scheduling of machines and material handling system in an FMS[J]. Operations Research, 1995,43(6):1058-1070.
[31]ULUSOY G, SIVRIKAYA-SERIFOGLU F, BILGE U. A genetic algorithm approach to the simultaneous scheduling of machines and automated guided vehicles[J]. Computer and Operations Research, 1997,24(4):335-351.
[32]LYU XF, SONG Y C, HE C Z, et al. Approach to integrated scheduling problems considering optimal number of automated guided vehicles and conflict-free routing in flexible manufacturing systems[J]. IEEE Access, 2019,7:74909-74924.
[33]UMAR U A, ARIFFIN M K A, ISMAIL N, et al. Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle(AGV) in flexible manufacturing systems(FMS) environment[J]. International Journal of Advanced Manufacturing Technology, 2015,81(9-12):2123-2141.
[34]TUBAILEH A. Layout of flexible manufacturing systems based on kinematic constraints of the autonomous material handing system[J]. International Journal of Advanced Manufacturing Technology, 2014,74(9-12):1521-1537.
[35]TUBAILEH A, SIAM J. Single and multi-row layout design for flexible manufacturing systems[J]. International Journal of Computer Integrated Manufacturing, 2017,30(12):1316-1330.
[36]SEDEHI M S, FARAHANI R Z. An integrated approach to determine the block layout, AGV flow path and the location of pick-up/delivery points in single-loop systems[J]. International Journal of Production Research, 2009,47(11):3041-3061.
[37]YAN R D, DUNNETT S J, JACKSON L M. Novel methodology for optimising the design,operation and maintenance of a multi-AGV system[J]. Reliability Engineering&System Safety, 2018,178:130-139.
[38]DRAGANJAC I, MIKLIC D,KOVACI Z, et al. Decentralized control of multi-AGV systems in autonomous warehousing applications[J]. IEEE Transactions on Automation Science and Engineering, 2016,13(4):1433-1447.
[39]MOUSAVI M, YAP H J, MUSA S N, et al. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization[J]. PLoS One, 2017,12(3). DOI:10.1371/journal.pone.0169817.
[40]YI G H, FENG Z L,MEI T C, et al. Multi-AGVs path planning based on improved ant colony algorithm[J]. Journal of Supercomputing, 2019,75(9):5898-5913.
[41]SAIDI-MEHRABAB M, DEHNAVI-ARANI S, EVAZABADIAN F, et al. An ant colony algorithm(ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs[J]. Computers and Industrial Engineering, 2015,86:2-13.
[42]HAMZHEEI M, FARAHANI R Z, RASHIDI-BAJGAN H. An ant colony-based algorithm for finding the shortest bidirectional path for automated guided vehicles in a block layout[J]. International Journal of Advanced Manufacturing Technology, 2013,64(1-4):399-409.
[43]ASEF-VAZIRI A, KAZEMI M, ESHGHI K, et al. An ant colony system for enhanced loop-based aisle-network design[J]. European Journal of Operational Research, 2010,207(1):110-120.
[44]LI L L, XU B W, YANG Y S, et al. Three-phase qubits-based quantum ant colony optimization algorithm for path planning of automated guided vehicles[J]. International Journal of Robotics and Automation, 2019,34(2):156-163.
[45]FARAHANI RZ, KARIMI B, TAMADON S. Designing an efficient method for simultaneously determining the loop and the location of the P/D stations using genetic algorithm[J]. International Journal of Production Research, 2007,45(6):1405-1427.
[46]CHIBA R, ARAI T, OTA J. Integrated design for automated guided vehicle systems using cooperative co-evolution[J]. Advanced Robotics, 2010,24(1-2):25-45.
[47]FARAHANI R Z, LAPORTE G, MIANDOABCHI E, et al. Designing efficient methods for the tandem AGV network design problem using tabu search and genetic algorithm[J]. International Journal of Advanced Manufacturing Technology, 2008,36(9-10):996-1009.
[48]HAN Z L, WANG D Q, LIU F, et al. Multi-AGV path planning with double-path constraints by using an improved genetic algorithm[J]. PLoS One, 2017,12(7). DOI:10.1371/journal.pone.0181747.
[49]YANG Y, ZHONG M, DESSOUKY Y, et al. An integrated scheduling method for AGV routing in automated container terminals[J]. Computers and Industrial Engineering, 2018,126:482-493.
[50]CHAWLA V K, CHANDA A K, ANGRA S. Multi-load AGVs scheduling by application of modified memetic partical swarm optimization[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018,40(9):436.
[51]MEHRABIAN A, TAVAKKOLI-MOGHADDAM R, KHALILI-DAMAGHANI K. Multi-objective routing and scheduling in flexible manufacturing systems under uncertainty[J]. Iranian Journal of Fuzzy Systems, 2017,14(2):45-77.
[52]ZHANG Y, LI L L, LIN H C, et al. Development of path planning approach using improved A-star algorithm in AGV system[J]. Journal of Internet Technology, 2019,20(3):915-924.
[53]ZHANG Z, GUO Q, CHEN J, et al. Collision-free route planning for multiple AGVs in an automated warehouse based on collision[J]. IEEE Access, 2018,6:26022-26035.
[54]VIVALDINI K, ROCHA L F, MARTARELLI N J, et al. Integrated tasks assignment and routing for the estimation of the optimal number of AGVS[J]. International Journal of Advanced Manufacturing Technology, 2016,82(1-4):719-736.
|