[1] AMATRIAIN X. Past, present, and future of recommender systems: An industry perspective[C]// Proceedings of the 21st International Conference on Intelligent User Interfaces. 2016, DOI:10.1145/2856767.2856798.
[2] 许海玲,吴潇,李晓东,等. 互联网推荐系统比较研究[J]. 软件学报, 2009,20(2):350-362.
[3] YIN F J, WANG Z W, TAN W T, et al. Sparsity-tolerated algorithm with missing value recovering in user-based collaborative filtering recommendation[J]. Journal of Information & Computational Science, 2013,10(15):4939-4948.
[4] 〖KG-*5〗SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. 2001:285-295.
[5] BOBADILLA J, ORTEGA F, HERNANDO A, et al. A collaborative filtering approach to mitigate the new user cold start problem[J]. Knowledge-Based Systems, 2012,26:225-238.
[6] CHOI K, SUH Y. A new similarity function for selecting neighbors for each target item in collaborative filtering[J]. Knowledge-Based Systems, 2013,37:146-153.
[7] LEMIRE D, MACLACHLAN A. Slope One predictors for online rating-based collaborative filtering[C]// Proceedings of the 2005 SIAM International Conference on Data Mining. 2005:471-475.
[8] GAO M, WU Z F. Incorporating personalized contextual information in item-based collaborative filtering recommendation[J]. Journal of Software, 2010,5(7):729-736.
[9] 董丽,邢春晓,王克宏. 基于不同数据集的协作过滤算法评测[J]. 清华大学学报(自然科学版), 2009,49(4):590-594.
[10]ZHANG Z Q, TANG X H, CHEN D L. Applying user-favorite-item-based similarity into Slope One scheme for collaborative filtering[C]// Proceedings of the 2014 World Congress on Computing and Communication Technology. 2014:5-7.
[11]刘林静,楼文高,冯国玲. 基于用户相似性的加权Slope One算法[J]. 计算机应用研究, 2016,33(9):2708-2711.〖HJ1.6mm〗
[12]YOU H P, LI H, WANG Y M, et al. An improved collaborative filtering recommendation algorithm combining item clustering and Slope One scheme[C]// Proceedings of the International MultiConference of Engineers and Computer Scientists. 2015:313-316.
[13]黄皓璇,邢延. 基于用户兴趣变化的Slope One协同过滤推荐算法[J]. 工业控制计算机, 2017,30(7):112-113.
[14]ZHAO Y, BAI S H. Research on optimizing recommend system for agriculture information personalization based on user clustering[C]// Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering. 2012:1477-1480.
[15]刘占兵,肖诗斌. 基于用户兴趣模糊聚类的协同过滤算法[J]. 现代图书情报技术, 2015,31(11):12-17.
[16]YU C, XU J P, DU X Y. Recommendation algorithm combining the user-based classified regression and the item-based filtering[C]// Proceedings of the 8th International Conference on Electronic Commerce: The New E-Commerce: Innovations for Conquering Current Barriers, Obstacles and Limitations to Conducting Successful Business on the Internet. 2006:574-578.
[17]BREESE J S, HECHERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C]// Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. 1998:43-52.
[18]KARYPIS G. Evaluation of item-based top-N recommendation a1gorithms[C]// Proceedings of the 10th International Conference on Information and Knowledge Management. 2001:247-254.
[19]邓爱林,朱扬勇,施伯乐. 基于项目评分预测的协同过滤推荐算法[J]. 软件学报, 2003,14(9):1621-1628.
[20]SARWAR B, KARYPIS G, KONSTAN J, et al. Analysis of recommendation algorithms for e-commerce[C]// Proceedings of the 2nd ACM Conference on Electronic Commerce. 2000:158-167.
[21]JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C]// Proceedings of the 4th ACM Conference on Recommender Systems. 2010,45(3):135-142.
[22]HERLOCKER J L, KONSTAN J A, BOREHERS A, et al. An algorithmic framework for performing collaborative filtering[C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 1999:230-237.
[23]HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems, 2004,22(1):5-53.
|