[1] 吴良秋. 浅析网络内部威胁[J]. 计算机时代, 2019(6):41-45.
[2] 王振辉,王振铎,姚全珠. 信息系统内部威胁检测技术研究[J]. 计算机系统应用, 2019,28(12):219-225.
[3] SCHONLAU M, DUMOUCHEL W, JU W H, et al. Computer intrusion: Detecting masquerades[J]. Statistical Science, 2001,16(1):58-74.
[4] 杨光,吴钰. 内部攻击实验数据集浅析[J]. 电脑知识与技术, 2016,12(21):55-56.
[5] MAXION R A, TOWNSEND T N. Masquerade detection using truncated command lines [C]// Proceedings of the 2002 IEEE International Conference on Dependable Systems and Networks. 2002:219-228.
[6] MAXION R A. Masquerade detection using enriched command lines[C]// Proceedings of the 2003 IEEE International Conference on Dependable Systems and Networks. 2003:5-14.
[7] YUNG K H. Using self-consistent Naive-Bayes to detect masquerades[C]// Proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery & Data Mining. 2004:329-340.
[8] KIM H S, CHA S D. Empirical evaluation of SVM-based masquerade detection using UNIX commands[J]. Computers & Security, 2005,24(2):160-168.
[9] 汤雨欢,施勇,薛质. 基于用户命令序列的伪装入侵检测[J]. 通信技术, 2018,51(5):1148-1153.
[10]田新广,段洣毅,程学旗. 基于shell命令和多重行为模式挖掘的用户伪装攻击检测[J]. 计算机学报, 2010,33(4):697-705.
[11]王一丰,郭渊博,李涛,等. 一种小样本下的内部威胁检测方法研究[J]. 小型微型计算机系统, 2019,40(11):2330-2336.
[12]WU H C, HUANG S H S. Masquerade detection using command prediction and association rules mining[C]// Proceedings of the 2009 IEEE International Conference on Advanced Information Networking and Applications. 2009:552-559.
[13]田原. 基于深度学习的内部威胁检测方法研究[D]. 北京:北京工业大学, 2019.
[14]Carnegie Mellon University. The SEI: The Leader in Software Engineering and Cyberseainty[EB/OL]. [2020-04-20]. https://www.sei.cmu.edu.
[15]肖喜,翟起滨,田新广,等. 基于Shell命令和多阶Markov链模型的用户伪装攻击检测[J]. 电子学报, 2011,39(5):1199-1204.
[16]The UCI KDD Archive. KDD Cup 1999 Data[EB/OL]. [2020-04-20]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
[17]SALEM M B, HERSHKOP S, STOLFO S J. A survey of insider attack detection research[M]// Advances in Information Security. Springer, 2008,39:69-90.
[18]BENITO CAMIA J, HERNNDEZ-GRACIDAS C, MONROY R, et al. The Windows-users and -intruder simulations logs dataset (WUIL): An experimental framework for masquerade detection mechanisms[J]. Expert Systems with Applications, 2014,41(3):919-930.
[19]郭晓明,孙丹. 基于朴素贝叶斯理论的内部威胁检测方法[J]. 计算机与现代化, 2017(7):101-106.
[20]SPARCK JONES K. A statistical interpretation of term specificity and its application in retrieval[J]. Journal of Documentation, 1972,28(1):11-21.
[21]CHEN T Q, GUESTRIN C. XGBoost: A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2016:785-794.
[22]ROSENBLATT F. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms[M]. Spartan Book, 1962.
|