[1] 赵园生. 基于云计算的存储服务器技术与趋势[J]. 电子技术与软件工程, 2018(22):169.
[2] 梁翠. 基于OpenStack的云计算平台的性能测试研究[J]. 电子设计工程, 2017,25(20):21-25.
[3] 刘思尧,夏绪卫,华荣锦. 基于Docker容器的云平台集群伸缩算法研究[J]. 科技通报, 2018,34(7):150-153.
[4] 范智皓,王浩狄,刘淏言,等. 基于LSTM神经网络的中文情感分类[J]. 中国新通信, 2018,20(14):240.
[5] 朱雁,马庄宣,王诗语,等. 基于BP神经网络的共享单车优化调度问题[J]. 网络安全技术与应用, 2018(11):44-45.
[6] 周斌斌. 基于云计算的资源调度和负载均衡的研究[D]. 成都:西南交通大学, 2018.
[7] 郝颖. 云计算服务下的资源调度[J]. 电子技术与软件工程, 2018(6):175.
[8] 李战. 基于Docker的容器集群调度机制的设计与实现[D]. 北京:北京邮电大学, 2018.
[9] WAJAHAT M, KARVE A, KOCHUT A, et al. MLscale: A machine learning based application-agnostic autoscaler[J]. Sustainable Computing: Informatics and Systems, 2017:13-25.
[10]ARABNEJAD H, PAHL C, JAMSHIDI P, et al. A comparison of reinforcement learning techniques for fuzzy cloud auto-scaling[C]// Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. 2017:64-73.
[11]ALI-ELDIN A, KIHL M, TORDSSONJ, et al. Efficient provisioning of bursty scientific workloads on the cloud using adaptive elasticity control[C]// Proceedings of the 3rd Workshop on Scientific Cloud Computing. 2012:31-40.
[12]ALI-ELDIN A, TORDSSON J, ELMROTH E. An adaptive hybrid elasticity controller for cloud infrastructures[C]// IEEE Network Operations and Management Symposium (NOMS). 2012:204-212.
[13]KHATUA S, GHOSH A, MUKHERJEEN. Optimizing the utilization of virtual resources in cloud environment[C]// 2010 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS). 2010:82-87.
[14]KUMAR J, GOOMER R, SINGH A K. Long short term memory recurrent neural network (LSTM-RNN) based workload forecasting model for cloud datacenters[J]. Procedia Computer Science, 2018,125:676-682.
[15]TESAURO G, JONG N K, DASR, et al. A hybrid reinforcement learning approach to autonomic resource allocation[C]// 2006 IEEE International Conference on Autonomic Computing. 2006:65-73.
[16]穆晓东,刘慧平,王宏斌. 应用图像卷积运算提取城市范围[J]. 遥感学报, 2011,15(6):1289-1300.
[17]冯煌. GPU图像处理的FFT和卷积算法及性能分析[J]. 计算机工程与应用, 2008(2):120-122.
[18]焦廉溪. 基于CNN和LSTM的交通流预测[J]. 通讯世界, 2018(10):265-266.
[19]陈欣,于俊洋,赵媛媛. 基于CNN和B-LSTM的文本处理模型研究[J]. 轻工学报, 2018,33(5):103-108.
[20]SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014,15(1):1929-1958.
[21]何平,刘紫燕. 基于改进多层感知机的手写数字识别[J]. 通信技术, 2018,51(9):2075-2080.
[22]葛轶众,杨马英. 基于ReLU神经网络的移动目标视觉伺服研究[J]. 计算机测量与控制, 2018,26(8):78-82.
[23]CAI J, CHANG Q, TANG X L, et al. Facial expression recognition method based on sparse batch normalization CNN[C]// 中国自动化学会控制理论专业委员会第37届中国控制会议论文集. 2018.
[24]FAN X, WANG L, LIS. Predicting chaotic coal prices using a multi-layer perceptron network model[J]. Resources Policy, 2016,50:86-92. |