计算机与现代化 ›› 2017, Vol. 0 ›› Issue (7): 16-19.doi: 10.3969/j.issn.1006-2475.2017.07.003

• 人工智能 • 上一篇    下一篇

融合用户评分和属性相似度的协同过滤推荐算法

  

  1. (广东农工商职业技术学院计算机系,广东广州510507)
  • 收稿日期:2017-05-15 出版日期:2017-07-20 发布日期:2017-07-20
  • 作者简介:杨秀萍(1978-),女,广东龙川人,广东农工商职业技术学院计算机系讲师,硕士,研究方向:智能信息处理。

Collaborative Filtering Recommendation Algorithm Based on User Score and User Attributes Similarity

  1. (Computer Science Department, Guangdong AIB Polytechnic College, Guangzhou 510507, China)
  • Received:2017-05-15 Online:2017-07-20 Published:2017-07-20

摘要: 为了提高协同过滤推荐系统的推荐效率和准确性,更好地向用户提供个性化的推荐服务,提出一种用户评分和属性相似度的推荐算法。首先分析当前协同过滤推荐研究的现状,设计评分相似度、兴趣倾向相似度、置信度等作为评分标准,使得用户相似度的计算更加准确、有区分度,然后根据用户属性来衡量用户之间的相似度,最后利用MovieLens数据集和Book-Crossing数据集做对比试验,对比精度、通用性和不同稀疏度及冷启动情况下的性能。实验结果表明,本文算法不仅提高了推荐精度,而且明显优于其它协同过滤推荐算法,具有更高的实际应用价值。

关键词: 推荐系统, 协同过滤, 相似性度量, 稀疏性问题

Abstract: In order to improve the of efficiency and accuracy of collaborative filtering recommendation, and provide personalized recommendation service to users, a novel collaborative filtering recommendation algorithm based on user score and user attributes similarity is proposed. Firstly, the similarity between the users is calculated according to the similarity of user scores, similarity of the user interest tendency, confidence. Secondly, the similarity between users is measured based on user attributes. Finally, the paper uses MovieLens data set and Book-Crossing data set to do comparative test, such as comparing precision, versatility and performance in different sparsity degree and cold start condition. The result shows that the proposed algorithm not only can improve the recommendation accuracy, but also is better than other collaborative filtering algorithms, and it has higher practical application value.

Key words: recommendation system, collaborative filtering, similarity measurement, sparsity problem

中图分类号: