计算机与现代化 ›› 2011, Vol. 7 ›› Issue (7): 88-91.doi:

• 算法分析与设计 • 上一篇    下一篇

基于机器视觉的大豆热损伤粒检测

高艳霞,胡昌标   

  1. 怀化学院计算机科学与技术系,湖南 怀化 418000
  • 收稿日期:2011-02-09 修回日期:1900-01-01 出版日期:2011-07-15 发布日期:2011-07-15

Inspection of Heat-damaged Soybean Based on Machine Vision

GAO Yan-xia, HU Chang-biao   

  1. Department of Computer Science and Technology, Huaihua University, Huaihua 418000, China
  • Received:2011-02-09 Revised:1900-01-01 Online:2011-07-15 Published:2011-07-15

摘要: 大豆国家新标准(GB 1352-2009)于2009年9月1日起正式实施,新标准首次增加对热损伤粒的要求。基于此,本文在分析大豆表面颜色特征的基础上,提出利用神经网络和大豆表面颜色特征对大豆进行标准粒和热损伤粒分类的方法。文中选取大豆图像的6种颜色特征值作为神经网络的训练样本,并尝试利用粒子群优化算法与BP (Back Propagation)结合算法训练网络。仿真结果表明,本文提出的方法取得一定的效果,有利于实现大豆的在线缺陷粒检测。

关键词: 图像处理, 颜色特征, 大豆, 粒子群优化算法, 机器视觉

Abstract: The new national standard of soybean(GB 1352-2009) is formally promulgated and implemented on September 1, 2009. Based on this fact that heat-damaged soybean is first proposed, a classification method by utilizing neural network and soybean surface color features is presented. This article chooses six color feature data to use as the input of the classifier and tries to use a new algorithm which combines particle swarm optimization with BP (Back Propagation) to train neural network. The simulation results show that the proposed method is of certain effect of soybean, which is helpful to realize the online vulnerability grain detection.

Key words: image processing, color properties, soybean, particle swarm optimization algorithm, machine vision