计算机与现代化 ›› 2025, Vol. 0 ›› Issue (10): 103-109.doi: 10.3969/j.issn.1006-2475.2025.10.016

• 信息安全 • 上一篇    下一篇

面向隐蔽化挖矿行为识别的特征选择方法


  


  1. (1.北京信息科技大学计算机学院,北京 102206; 2.北京信息科技大学北京未来区块链与隐私计算高精尖中心,北京 102206;
    3.云南省昭通市第一人民医院计算机信息中心,云南 昭通 657000)

  • 出版日期:2025-10-27 发布日期:2025-10-28
  • 作者简介: 作者简介:何志涌(1999—),男,安徽安庆人,硕士研究生,研究方向:网络和数据安全,E-mail: 1159904577@qq.com; 贺泽宇(1992—),男,湖南新化人,讲师,硕士生导师,博士,研究方向:个性化推荐,图神经网络; 张伟(1980—),男,山东临清人,教授,博士,研究方向:网络和数据安全,软硬件协同设计; 柳国平(1983—),男,云南会泽人,高级工程师,学士,研究方向:医疗信息安全,区块链,E-mail: 53947502@qq.com。
  • 基金资助:
    基金项目:国家重点研发计划项目(2022YFC3320903); “北京未来区块链与隐私计算高精尖中心”和“国家经济安全预警工程北京实验室”资助项目
     

Feature Selection Method for Recognizing Covert Mining Behavior


  1. (1. School of Computer Science, Beijing Information Science and Technology University, Beijing 102206, China;
    2. Advanced Innovation Center for Future Blockchain and Privacy Computing, Beijing Information Science and Technology
    University, Beijing 102206, China; 3. Computer Information Centre, The First People’s Hospital of Zhaotong City, 
    Zhaotong 657000, China)
  • Online:2025-10-27 Published:2025-10-28

摘要: 摘要:随着我国对挖矿活动的持续整治,挖矿活动通过加密、代理等方式逐渐隐蔽化,现有的挖矿行为监测技术在面对隐蔽化挖矿时准确性较低,难以有效检测此类行为。针对这一问题,本文提出一种基于RF-Voting的隐蔽化挖矿行为识别方法。该方法通过收集并整理隐蔽化挖矿流量数据集,定义3类隐蔽化挖矿行为。在隐蔽化挖矿特征选择模块中,RF (Random Forest, 随机森林)特征选择器与投票分类器Voting交互选择特征,可以有效筛选出重要特征。在行为匹配模块,提出效能感知和自适应权重分配的增强型Voting,效能感知可以筛选高效的基分类器,自适应权重分配可以为分类器动态分配权重,两者有机结合可以高效提升模型的分类效率和稳定性。实验结果表明,与传统挖矿检测方法相比,该方法准确率最高提升了6.18个百分点,F1分数最高提升了9.35个百分点,验证了RF-Voting方法为隐蔽化挖矿行为监测提供了一种更精准有效的方案。



关键词: 关键词:隐蔽化挖矿, 挖矿行为, 挖矿流量, 流量分类, 机器学习

Abstract: Abstract: As the Chinese government continues to regulate cryptocurrency mining activities, miners are increasingly concealing their operations through encryption, proxies, and other methods. Existing mining behavior monitoring techniques have lower accuracy when dealing with covert mining, making effective detection difficult. To address this problem, this paper proposes a covert mining behavior identification method based on RF-Voting. First, we collected and compiled a dataset of covert mining traffic and defined three types of covert mining behaviors. In the feature selection module for covert mining, the RF (Random Forest) feature selector interacts with the Voting classifier to select features, effectively identifying important ones. In the behavior matching module, we propose an enhanced Voting classifier with performance-aware selection and adaptive weight assignment. Performance-aware selection allows for screening high-performance base classifiers, while adaptive weight assignment dynamically adjusts the weights of the classifiers. By combining these two methods, we effectively improve the classification performance and stability of the model. Experimental results show that, compared to traditional mining detection methods, the accuracy of this method was increased by up to 6.18 percentage points, and the F1 score was increased by up to 9.35 percentage points, demonstrating that the RF-Voting method provides a more accurate and effective solution for monitoring covert mining behavior.

Key words: Key words: convert mining, mining behavior, mining traffic, traffic classification, machine learning

中图分类号: