计算机与现代化 ›› 2025, Vol. 0 ›› Issue (04): 83-88.doi: 10.3969/j.issn.1006-2475.2025.04.013

• 图像处理 • 上一篇    下一篇

基于图像分割的无人机影像AGP计算方法


  

  1. (青海大学计算机技术与应用系,青海 西宁 810016)
  • 出版日期:2025-04-30 发布日期:2025-04-30
  • 基金资助:
    国家自然科学基金资助项目(62166033)

AGP Calculation Methods in UAV Imagery Based on Image Segmentation 

  1. (Department of Computer Technology and Application, Qinghai University, Xi’ning 810016, China)
  • Online:2025-04-30 Published:2025-04-30

摘要: 草地退化是三江源地区一个不容忽视的问题。使用深度学习技术进行三江源草地退化评价是实现草地评价智能化的重要一步。然而,语义分割中的一个挑战是无人机拍摄的影像可能存在高度不一致,这可能导致毒杂草覆盖比例的计算结果与实际情况不符,从而引发草地退化评价的误差。本文针对已知拍摄草地图像高度和未知拍摄草地图像高度2种情况,提出一种基于实际地面比例(AGP)的计算方法。对于已知拍摄高度的影像,本文选择使用拍摄高度来计算AGP,并将不同高度的图像映射到相同的高度上进行覆盖度计算。对于未知高度的拍摄影像,本文训练了芨芨草实例分割模型,根据实例分割的结果来计算AGP,然后进行覆盖度计算。实验结果表明,与直接计算覆盖度相比,使用实例分割方法将误差从2.7%降低到了0.39%。这一方法对于提高智能草地退化评价的准确性具有重要意义。

关键词: 深度学习, 实例分割, 无人机影像, 草地退化

Abstract: Grassland degradation is a critical issue in the Three Rivers Source Region that cannot be overlooked. Employing deep learning techniques for the evaluating of grassland degradation in the Three Rivers Source Region is a pivotal step towards intelligent grassland assessment. However, a challenge in semantic segmentation lies in the potential inconsistency of altitudes in UAV-captured imagery, which can lead to discrepancies between computed proportions of poisonous weed cover and actual conditions, consequently introducing errors in grassland degradation assessment. This study proposes a method to calculate the Actual Ground Proportion (AGP) for both known and unknown heights of captured grassland images. For images with known heights, we select to utilize the captured altitude for AGP calculation and then map images of varying altitudes to a common height for coverage computation. For images with unknown heights, we train a sorrel instance segmentation model to calculate AGP based on instance segmentation results, followed by coverage computation. Experimental restlts demonstrate that, in comparison to direct coverage calculation, the use of instance segmentation reduces the error from 2.7% to 0.39%. This approach holds significant importance in enhancing the accuracy of intelligent grassland degradation assessment.

Key words:  , deep learning, instance segmentation, UAV imagery, grassland degradation

中图分类号: