计算机与现代化 ›› 2025, Vol. 0 ›› Issue (06): 86-91.doi: 10.3969/j.issn.1006-2475.2025.06.014

• 图像处理 • 上一篇    下一篇

结合多尺度交互与跨通道注意的图像质量评价

  

  1. (1.东华理工大学信息工程学院,江西 南昌 330013; 2.江西省放射性地学大数据技术工程实验室,江西 南昌 330013) 
  • 出版日期:2025-06-30 发布日期:2025-07-01
  • 作者简介: 作者简介:秦宏峥(1998—),女,重庆渝北人,硕士研究生,研究方向:图像质量评价,E-mail: qinhongzheng113@163.com; 通信作者:王同罕(1984—),男,江西上饶人,副教授,博士,研究方向:计算机视觉,E-mail: thwang@ecut.edu.cn; 贾惠珍(1983—),女,河南襄城人,教授,博士,研究方向:模式识别,图像处理,E-mail: hzjianlg@126.com。
  • 基金资助:
    基金项目:国家自然科学基金资助项目(62261001,62266001); 东华理工大学研究生创新基金资助项目(YC2023-S566)

Image Quality Assessment with Multi-scale Interaction and Cross-channel Attention

  1. (1.School of Information Engineering, East China University of Technology, Nanchang 330013, China;
    2. Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, Nanchang 330013, China)
  • Online:2025-06-30 Published:2025-07-01

摘要:
摘要:面向真实失真的无参考图像质量评价中存在失真类型多样性、复杂性以及局部噪声等挑战。鉴于图像中不同区域对图像整体质量感知的贡献度各异,仅依赖全局特征表示难以描述图像失真细节。本文提出一种具有多尺度交互与跨通道注意的无参考图像质量评价方法。首先,基于卷积注意力机制的Transformer,构建多尺度交互块,以增强不同尺度特征间局部与全局信息的交流。同时,为避免多尺度特征利用不足或过度使用,设计多尺度动态连接方式。然后,采用跨通道注意力模块,进一步促进跨尺度特征在通道层面的信息互补与融合。最后,回归获得质量分数。本文方法与主流无参考图像质量评价方法在5个公开的图像质量评价数据集上进行比较,测试结果相比于表现最好的方法提升了2%。与基于自注意力机制和转置注意力机制的方法比较,本文方法的参数量分别减少了3%和74%,计算复杂度分别降低了11%和74%。实验结果表明,本文方法具有先进的质量评估性能和较好的泛化性,同时保持较低的复杂度。


关键词: 关键词:无参考图像质量评价, 真实失真, 多尺度交互, 注意力机制, Transformer

Abstract:


Abstract: Authentic distortion-oriented no-reference image quality assessment is still challenging due to the variety of distortion types, complexity, and localized noise. As various regions within an image contribute differently to the overall perception of quality, it is problematic to characterize image distortion solely through global feature representation. A no-reference image quality assessment method with multi-scale interaction and cross-channel attention is proposed. Firstly, multi-scale interaction blocks are constructed based on the Transformer that utilizes a convolutional attention mechanism, to enhance the exchange of local and global information among features of varying scales. Meanwhile, a multi-scale dynamic connectivity approach is designed to avoid underutilization or overutilization of multi-scale features. Secondly, a cross-channel attention module is employed to further facilitate the information complementarity and integration of cross-scale features at the channel level. Finally, quality scores are obtained through regression. The proposed method is evaluated against widely recognized no-reference image quality assessment methods across five publicly available image quality evaluation datasets, and the test results demonstrate a potential improvement of 2% in performance compared to the best-performing method. Furthermore, the number of parameter is decreased by 3% and 74%, while the computational complexity by 11% and 74%, respectively, in comparison to the methods based on self-attention and transpositional attention mechanisms. The result demonstrates that the proposed approach achieves advanced quality assessment performance and strong generalization capabilities while keeping the complexity low.

Key words: Key words: no-reference image quality assessment, authentic distortion, multi-scale interaction, attention mechanism, Transformer

中图分类号: