计算机与现代化 ›› 2025, Vol. 0 ›› Issue (04): 50-55.doi: 10.3969/j.issn.1006-2475.2025.04.008

• 算法设计与分析 • 上一篇    下一篇

基于YOLO和PPO的无人机路径规划


  

  1. (1.河海大学数学学院,江苏 南京 211100; 2.南京邮电大学现代邮政学院,江苏 南京 210003;
    3.河海大学人工智能与自动化学院,江苏 常州 213200)
  • 出版日期:2025-04-30 发布日期:2025-04-30
  • 基金资助:
    河北省自然科学基金资助项目(A2023209002); 安徽省重点实验室基金资助项目(KLAHEI18018); 教育部重点实验室开放基金资助项目(Scip20240111)

UAV Path Planning Based on YOLO and PPO

  1. (1. School of Mathematics, Hohai University, Nanjing 211100, China;
    2. School of Modern Posts, Nanjing University Of Posts And Telecommunications, Nanjing 210003, China;
    3. School of Artificial Intelligence and Automation, Hohai University, Changzhou 213200, China)
  • Online:2025-04-30 Published:2025-04-30

摘要: 针对复杂多变的三维未知环境,设计一种基于深度强化学习的无人机路径规划方法,该方法在有限的观测状态下作出决策,解决高复杂度和不确定性带来的挑战。首先,在有限的感知范围内,利用YOLO网络提取图像中的障碍物信息;其次,提出危险度来解决不同时刻障碍物信息数量差异的问题,并将危险度提炼出的信息结合雷达信息作为智能体的输入;最后,在近端策略优化算法基础上,设计状态分解下的动作选择策略,以提升无人机动作的有效性。通过在Gazebo环境中进行仿真评估,实验结果表明,相较于近端策略优化算法每回合平均奖励提升了15.6个百分点,平均成功率提升了2.6个百分点。

关键词: 无人机, 路径规划, 深度强化学习, YOLOv4

Abstract:  This paper proposes an unmanned aerial vehicle path planning method based on deep reinforcement learning for complex and ever-changing three-dimensional unknown environments. This method optimizes strategies within a limited observation space to address the challenges posed by high complexity and uncertainty. Firstly, within a limited perceptual range, the YOLO network is used to extract obstacle information from the image information. Secondly, this paper designs hazard levels to address the issue of varying amounts of obstacle information at different times, and combines the extracted information from hazard levels with radar information as input to the intelligent agent. Finally, based on the proximal strategy optimization algorithm, an action selection strategy under state decomposition is designed to improve the effectiveness of drone actions. Through simulation evaluation in Gazebo, the experimental results show that compared to the proximal strategy optimization algorithm, the average reward per round has increased by 15.6 percentage points, and the average success rate has increased by 2.6 percentage points.  

Key words:  , unmanned aerial vehicle, path planning, deep reinforcement learning, YOLOv4

中图分类号: