计算机与现代化 ›› 2024, Vol. 0 ›› Issue (03): 85-91.doi: 10.3969/j.issn.1006-2475.2024.03.014
摘要: 摘要:低照度图像增强(Low Light Image Enhancement, LLIE)是将光照不足条件下获取的图像恢复成正常曝光的图像,基于深度学习的LLIE算法常用堆叠卷积或上/下采样的方式设计,这样缺少相关语义信息的指导,导致增强后的图像存在噪声增多、色彩失真、细节丢失等问题。为此,本文提出一种基于双重注意力残差模块的LLIE算法。该算法提出融合双重注意力单元的残差模块(Dual Attention Residual Block, DA-ResBlock),在通道域和空间域提供的语义信息引导下,通过多级串联的DA-ResBlock对有效特征进行稳定提取,并且使用跳跃链接与卷积神经网络来恢复图像细节信息。此外,使用复合损失函数对增强任务进行约束。最后,在2个真实图像的公共数据集上与近几年主流算法进行对比。实验结果表明,本文算法在主观视觉上在有效提高图像亮度的同时,更好地抑制了噪声、恢复了图像色彩与细节纹理,客观评价上在PSNR、SSIM、LPIPS这3个指标上均优于所对比的主流算法。
中图分类号: