[1] SAXENA A, CHUNG S H, NG A Y.Learning depth from single monocular images[C]// Proceedings of the 18th International Conference on Neural Information Processing Systems. 2005:1161-1168.
[2] EIGEN D, PUHRSCH C, FERGUS R.Depth map prediction from a single image using a multi-scale deep network[C]// Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). 2015:2650-2658.
[3] 王泉德,张松涛. 基于多尺度特征融合的单目图像深度估计[J]. 华中科技大学学报(自然科学版), 2020,48(5):7-12.
[4] 贾瑞明,李阳,李彤,等. 多层级特征融合结构的单目图像深度估计网络[J]. 计算机工程, 2020,46(12):207-214.
[5] LI B, SHEN C, DAI Y, et al.Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015:1119-1127.
[6] LAINA I, RUPPRECHT C, BELAGIANNIS V, et al.Deeper depth prediction with fully convolutional residual networks[C]// 2016 4th International Conference on 3D Vision (3DV). 2016:239-248.
[7] 袁建中,周武杰,潘婷,等. 基于深度卷积神经网络的道路场景深度估计[J]. 激光与光电子学进展, 2019,56(8):179-187.
[8] GAN Y, XU X, SUN W, et al.Monocular depth estimation with affinity, vertical pooling, and label enhancement[C]// Computer Vision - ECCV 2018. 2018:232-247.
[9] YIN W, LIU Y, SHEN C, et al.Enforcing geometric constraints of virtual normal for depth prediction[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). 2019:5683-5692.
[10] RANFTL R, LASINGER K, HAFNER D, et al.Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022,44(3):1623-1637.
[11] FU H, GONG M, WANG C, et al.Deep ordinal regression network for monocular depth estimation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:2002-2011.
[12] ALHASHIM I, WONKA P. High quality monocular depth estimation via transfer learning[J]. arXiv preprint arXiv:1812.11941, 2018.
[13] LEE J H, HAN M, KO D W, et al.From big to small: Multi-scale local planar guidance for monocular depth estimation[J]. arXiv preprint arXiv:1907.10326, 2019.
[14] QIAO S, ZHU Y, ADAM H, et al.ViP-DeepLab: Learning visual perception with depth-aware video panoptic segmentation[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021:3996-4007.
[15] 廖志伟,金兢,张超凡,等. 基于分层压缩激励的ASPP网络单目深度估计[J]. 图学学报, 2022,43(2):214-222.
[16] 王泉德,王奇坤,程凯,等. 强化边缘的单目图像深度估计[J]. 华中科技大学学报(自然科学版), 2022,50(3):36-42.
[17] 刘杰平,温竣文,梁亚玲. 基于多尺度注意力导向网络的单目图像深度估计[J]. 华南理工大学学报(自然科学版), 2020,48(12):52-62.
[18] WANG Q, WU B, ZHU P, et al.ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:11531-11539.
[19] AICH S, VIANNEY J M U, ISLAM M A, et al. Bidirectional attention network for monocular depth estimation[C]// 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021:11746-11752.
[20] LEE S, LEE J, KIM B, et al.Patch-wise attention network for monocular depth estimation[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021,35(3):1873-1881.
[21] CHEN W, ZHAO F, YANG D W, et al.Single-image depth perception in the wild[C]// 2016 30th Conference on Neural Information Processing System. 2016:730-738.
[22] 曾一鸣. 利用稀疏点云偏序关系的半监督单目图像深度估计[J]. 计算机辅助设计与图形学学报, 2019,31(11):2038-2046.
[23] 邹承明,胡佑璞. 引入生成对抗网络的室外场景单目深度估计[J]. 计算机工程与应用, 2021,57(6):176-183.
[24] GARG R, BG V K, CARNEIRO G, et al.Unsupervised CNN for single view depth estimation: Geometry to the rescue[C]// Computer Vision - ECCV 2016. 2016:740-756.
[25] GODARD C, AODHA O M, BROSTOW G J.Unsupervised monocular depth estimation with left-right consistency[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:6602-6611.
[26] 刘香凝,赵洋,王荣刚. 基于自注意力机制的多阶段无监督单目深度估计网络[J]. 信号处理, 2020,36(9):1450-1456.
[27] CHEN L, PAPANDREOU G, KOKKINOS I, et al.DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848.
[28] WOO S, PARK J, LEE J, et al.CBAM: Convolutional block attention module[C]// Computer Vision - ECCV 2018. 2018:3-19.
[29] XIE S, GIRSHICK R, DOLLÄR P, et al. Aggregated residual transformations for deep neural networks[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:5987-5995.
[30] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:4700-4708. |