[1] |
ALHAGLA K, MANSOUR A, ELBASSUONI R. Optimizing windows for enhancing daylighting performance and energy saving[J]. Alexandria Engineering Journal, 2019,58(1):283-290.
|
[2] |
AL HORR Y, ARIF M, KAUSHIK A, et al. Occupant productivity and office indoor environment quality: A review of the literature[J]. Building and Environment, 2016,105(2):369-389.
|
[3] |
李婧豪,卢玫珺. 天然采光模型对建筑室内光环境及能耗的影响研究[J]. 建筑节能(中英文), 2022,50(4):28-33.
|
[4] |
AHMAD R M, REFFAT R M. A comparative study of various daylighting systems in office buildings for improving energy efficiency in egypt[J]. Journal of Building Engineering, 2018,18:360-376.
|
[5] |
马秀峰,王立雄. 基于DIALux Evo软件的某办公楼照明的优化设计[J]. 照明工程学报, 2018,29(3):37-41.
|
[6] |
AMASYALI K, EL-GOHARY N M. A review of data-driven building energy consumption prediction studies[J]. Renewable and Sustainable Energy Reviews, 2018,81:1192-1205.
|
[7] |
KOOMEY J, BERARD S, SANCHEZ M, et al. Implications of historical trends in the electrical efficiency of computing[J]. IEEE Annals of the History of Computing, 2011,33(3):46-54.
|
[8] |
储海龙,张宇宁,王坚. 基于CIE天空模型的室内自然光照度计算模型[J]. 光电子技术, 2018,38(3):167-171.
|
[9] |
ZOMORODIAN Z S, TAHSILDOOST M. Assessing the effectiveness of dynamic metrics in predicting daylight availability and visual comfort in classrooms[J]. Renewable Energy, 2019,134:669-680.
|
[10] |
HE Q S, LI Z W, GAO W, et al. Predictive models for daylight performance of general floorplans based on CNN and GAN: A proof-of-concept study[J]. Building and Environment,
|
|
2021,206(6918). DOI:10.1016/j.buildenv.2021.108346.
|
[11] |
JORDAN M I, MITCHELL T M. Machine learning: Trends, perspectives, and prospects[J]. Science, 2015,349(6245):255-60.
|
[12] |
AYOUB M. A review on machine learning algorithms to predict daylighting inside buildings[J]. Solar Energy, 2020,202:249-275.
|
[13] |
ZHOU S L. Prediction of daylighting and energy performance using artificial neural network and support vector machine[J]. American Journal of Civil Engineering and Architecture, 2015,3:1-8.
|
[14] |
王崇,李雯雯,张露,等. 基于人工神经网络的室内自然光照度预测[J]. 物联网技术, 2020,10(9):52-53.
|
[15] |
AHMAD M, HIPPOLYTE J L, MOURSHED M, et al. Random forests and artificial neural network for predicting daylight illuminance and energy consumption[C]// Proceedings of the 15th IBPSA Conference. 2017:7-9.
|
[16] |
刘聪,高颖. 基于支持向量机的室内照度预测仿真[J]. 河南科技, 2019(2):114-116.
|
[17] |
NGARAMBE J, IRAKOZE A, YUN G Y, et al. Comparative performance of machine learning algorithms in the prediction of indoor daylight illuminances[J]. Sustainability, 2020,12(11). DOI:10.3390/su12114471.
|
[18] |
李光皓,马展韩. 室内工作面天然采光照度分布实时预测方法[J]. 照明工程学报, 2022,33:131-144.
|
[19] |
柳长源,何先平,于会越. 基于数据驱动的涡轮发动机剩余寿命预测[J]. 电机与控制学报, 2021,25(7):68-74.
|
[20] |
HAN Y S, SHEN L H, SUN C. Developing a parametric morphable annual daylight prediction model with improved generalization capability for the early stages of office building design[J]. Building and Environment, 2021,200(1). DOI:10.1016/j.buildenv.2021.107932.
|
[21] |
ABDI H, WILLIAMS L J. Principal component analysis[J]. WIREs Computational Statistics, 2010,2(4):433-459.
|
[22] |
王建民,叶钰蓉,饶超敏,等. 基于GBDT算法的混凝土叠合面粘结强度预测分析[J]. 建筑材料学报, 2023,26(2):150-155.
|
[23] |
ZHANG H W, YU J Q, ZHAO A J, et al. Predictive model of cooling load for ice storage air-conditioning system by using GBDT[J]. Energy Reports, 2021,7:1588-1597.
|
[24] |
皮理想,崔桂梅. 进化算法优化GBDT的带钢卷取温度预测[J]. 华南师范大学学报(自然科学版), 2022,54(1):122-127.
|
[25] |
崔佳旭,杨博. 贝叶斯优化方法和应用综述[J]. 软件学报, 2018,29(10):3068-3090.
|
[26] |
KHIDER T A, AL-BAGHDADi H A. Dynamic response of historical masonry minaret under seismic excitation[J]. Civil Engineering Journal, 2020,6(1):142-155.
|
[27] |
赵忠超,杨维菊. 建筑照明模拟软件Dialux的计算精度验证[J]. 建筑与文化, 2013(10):63-64.
|
[28] |
张绍纲. CIE《室内工作场所照明》标准介绍——(CIE S 008/E-2001)[C]// 2002城市夜景照明及体育运动场馆照明技术研讨会. 2002:172-180.
|