[1] SZEGEDY C, TOSHEV A, ERHAN D. Deep neural networks for object detection[C]// Proceedings of 2013 Advances in Neural Information Processing Systems(NIPS). 2013:2553-2561.
[2] MERLIN P M, FARBER D J. A parallel mechanism for detecting curves in pictures[J]. IEEE Transactions on Computers, 1975,24(1):96-98.
[3] 〖JP3〗SINGLA N. Motion detection based on frame difference method[J]. International Journal of Information & Computation Technology, 2014,4(15):1559-1565.
[4] VIOLA P A, JONES M J. Rapid object detection using a boosted cascade of simple features[C]// Proceedings of 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001:511-518.
[5] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018,PrePrints, DOI: 10.1109/TPAMI.2018.2844175.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unifled, real- time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2016:779-788.
[7] HOU Q B, CHENG M M, HU X W, et al. Deeply supervised salient object detection with short connections[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2017:5300-5309.
[8] ERHAN D, SZEGEDY C, TOSHEV A, et al. Scalable object detection using deep neural networks[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014:2155-2162.
[9] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// Proceedings of the 14th European Conference on Computer Vision(ECCV). Springer, 2016:21-37.
[10]GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision. IEEE, 2015:1440-1448.
[11]HOWARDA G, ZHU M L, CHEN B, et al. Mobilenets: Efficient convolutional neural networks for mobile vision applications[J]. Computer Vision and Pattern Recognition, 2017: arXiv:1704.04861.
[12]ZHANG X Y, ZHOU X Y, LIN M X, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[J]. Computer Vision and Pattern Recognition, 2017: arXiv:1707.01083.
[13]IOFFE S, SZEGEDYC. Batch normalization: Accelerating deep network training by reducing internal covariate shift[C]// Proceedings of the 32nd International Conference on Machine Learning(PMLR). 2015:448-456.
[14]张小锋,刘红铮. 基于卷积神经网络的花朵图片分类算法[J]. 计算机与现代化, 2018(9):52-55.
[15]张洪涛,路红英,刘腾飞,等. 基于深度学习的显著性检测方法模型——SCS[J]. 计算机与现代化, 2018(4):48-55.
[16]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2014:580-587.
[17]LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440.
[18]UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013,104(2):154-171.
[19]REDMON J, FARHADI A. Yolov3: An incremental improvement[J]. Computer Vision and Pattern Recognition, 2018: arXiv:1804.02767.
[20]JIA Y Q, SHELHAMER E, DONAHUE J, et al. Caffe: Convolutional architecture for fast feature embedding[C]// Proceedings of the 22nd ACM International Conference on Multimedia. 2014:675-678.
[21]HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981,17(1-3):185-203.
[22]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[23]DAI J F, LI Y, HE K M, et al. R-FCN: Object detection via region-based fully convolutional networks[C]// Proceedings of the 2016 Advances in Neural Information Processing System(NIPS). MIT, 2016:379-387. |