计算机与现代化 ›› 2014, Vol. 0 ›› Issue (3): 89-93.doi: 10.3969/j.issn.1006-2475.2014.03.022

• 图像处理 • 上一篇    下一篇

一种基于像素抽样建模的车辆目标提取方法

  

  1. 南京航空航天大学自动化学院,江苏南京210016
  • 收稿日期:2013-10-23 出版日期:2014-03-24 发布日期:2014-03-31
  • 作者简介:李旭(1986-),男,江苏南京人,南京航空航天大学自动化学院硕士研究生,研究方向:模式识别,图像处理; 徐贵力(1972-),男,教授,博士生导师,博士,研究方向:光电检测,计算机视觉,数字图像处理与模式识别,计算机测控。

An Extraction Method for Vehicle Target Based on Pixel Sampling Modeling

  1. College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2013-10-23 Online:2014-03-24 Published:2014-03-31

摘要: 针对传统背景建模算法初始化时间长、存在Ghost区等缺点,本文根据样本一致性原理,提出一种基于像素抽样的背景建模方法。初始化阶段利用历史像素序列多次采样构建背景模型;模型更新采用改进的ViBe算法,同时更新历史像素模型和ViBe背景模型;前景检测时,利用样本一致性原理,将源像素同时与两个模型作比较,获得目标。对比实验表明,与Vibe原算法及传统目标提取算法相比,本文算法在有运动目标存在的情况下,初始化效率较高,并且有效抑制Ghost区,低速目标检测效果良好。

关键词: 背景建模, 样本一致性, 目标检测

Abstract: Aiming at the problem that traditional background models take too much time on initialization and exist Ghost area, we propose a kind of new model based on pixel sampling and the sample consensus theory. During the initialization phase, we sample the historical pixel sequence many times to build the background model. In the model updating phase, we update both of the historic pixel model and the ViBe background models with the improved ViBe algorithm. Finally, we use sample consensus theory to calculate the pixel between the two background models and find the target. The contrast test confirms that, the algorithm works well in Ghost area mitigation and achieves low speed target detection effects when foreground displayed in the initialization phase.

Key words: background modeling, sample consensus, target detection

中图分类号: