[1] 李小薪,梁荣华. 有遮挡人脸识别综述:从子空间回归到深度学习[J]. 计算机学报, 2018,41(1):177-207.
[2] 徐润昊,程吉祥,李志丹,等. 基于循环生成对抗网络的含遮挡人脸识别[J]. 计算机工程, 2022,48(5):289-296.
[3] LI Y D, GUO K, LU Y G, et al. Cropping and attention based approach for masked face recognition[J]. Applied Intelligence, 2021,51(5):3012-3025.
[4] WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:6450-6458.
[5] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[6] PARK J, WOO S, LEE J, et al. BAM: Bottleneck attention module[J]. arXiv preprint arXiv:1807.06514, 2018.
[7] WOO S, PARK J, LEE J, et al. CBAM: Convolutional block attention module[C]// Computer Vision-ECCV 2018. 2018:3-19.
[8] SHAO Z W, LIU Z L, CAI J F, et al. Deep adaptive attention for joint facial action unit detection and face alignment[C]// Computer Vision – ECCV 2018. 2018:725-740.
[9] RAO Y M, LU J W, ZHOU J. Attention-Aware deep reinforcement learning for video face recognition[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:3951-3960.
[10] HARIRI W. Efficient masked face recognition method during the COVID-19 Pandemic[J]. arXiv preprint arXiv:2105.03026, 2021.
[11] WENG R L, LU J W, TAN Y P. Robust point set matching for partial face recognition[J]. IEEE Transactions on Image Processing, 2016,25(3):1163-1176.
[12] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[13] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021:13708-13717.
[14] ZHANG H, ZU K K, LU J, et al. EPSANet: An efficient pyramid split attention block on convolutional neural network[J]. arXiv preprint arXiv:2105.14447, 2021.
[15] DENG J K, GUO J, XUE N N, et al. ArcFace: Additive angular margin loss for deep face recognition[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:4685-4694.
[16] SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[C]// NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems. 2018:2488-2498.
[17] HE K M, ZHANG X Y, REN S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classification[C]// 2015 IEEE International Conference on Computer Vision (ICCV). 2015:1026-1034.
[18] AGARAP A F. Deep learning using rectified linear units (ReLU)[J]. arXiv preprint arXiv:1803.08375, 2018.
[19] JANG E, GU S X, POOLE B. Categorical Reparameterization with gumbel-softmax[J]. arXiv preprint arXiv:1611.01144, 2016.
[20] YI D, LEI Z, LIAO S C, et al. Learning face representation from scratch[J]. arXiv preprint arXiv:1411.7923, 2014.
[21] CAO Q, SHEN L, XIE W D, et al. VGGFace2: A dataset for recognising faces across pose and age[C]// 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). 2018:67-74.
[22] HUANG G B, MATTAR M, BERG T, et al. Labeled faces in the wild: A database for studying face recognition in unconstrained environments[C]//Workshop on faces in Real-Life Images: Detection, Alignment, and Recognition. 2008.
[23] ANWAR A, RAYCHOWDHURY A. Masked face recognition for secure authentication[J]. arXiv preprint arXiv:2008.11104, 2020.
[24] KING D E. Dlib-ml: A machine learning toolkit[J]. Journal of Machine Learning Research, 2009,10:1755-1758.
[25] ZHANG Q, YANG Y. SA-Net: Shuffle Attention for Deep Convolutional Neural Networks[C]// ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021:2235-2239.
[26] CHEN S, LIU Y, GAO X, et al. MobileFaceNets: Efficient CNNs for accurate real-time face verification on mobile devices[C]// Biometric Recognition. 2018:428-438.
[27] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:618-626.