Rail Surface State Identification Based on Improved Metric Learning under Small Samples
(1. School of Rail Transportation, Hunan University of Technology, Zhuzhou 412007, China; 2. School of Intelligent Control, Hunan Railway Professional Technology College, Zhuzhou 412012, China)
YU Huijun1, PENG Cibing1, LIU Jianhua1, ZHANG Jinsheng1, LIU Lili2. Rail Surface State Identification Based on Improved Metric Learning under Small Samples[J]. Computer and Modernization, 2024, 0(06): 89-94.
[1] 王军. 高速列车技术与产业发展机制及实施路径[J]. 铁道学报, 2021,43(2):103-110.
[2] 何成刚,张佩祯,邹港,等. 自然环境条件下轮轨接触黏着特性研究进展[J]. 摩擦学学报, 2022,42(3):642-656.
[3] LIU J, LIU L, HE J, et al. Wheel/rail adhesion state identification of heavy-haul locomotive based on particle swarm optimization and kernel extreme learning machine[J]. Journal of Advanced Transportation, 2020.
[4] 何静,刘建华,张昌凡. 重载机车轮轨黏着利用技术研究综述[J]. 铁道学报, 2018,40(9):30-39.
[5] ZHANG H, PAN D, LIU J, et al. A novel MAS-GAN-based data synthesis method for object surface defect detection[J]. Neurocomputing, 2022,499:106-114.
[6] 尹冠生,高建国,史明辉,等. 图像分块下的隧道裂缝识别方法[J]. 交通运输工程学报, 2022,22(02):148-159.
[7] LAI N, KAN M, HAN C, et al. Learning to learn adaptive classifier–predictor for few-shot learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,32(8):3458-3470.
[8] 刘颖,雷研博,范九伦,等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2021,47(2):297-315.
[9] 李凡长,刘洋,吴鹏翔,等. 元学习研究综述[J]. 计算机学报, 2021,44(2):422-446.
[10] CHENG M, WANG H, LONG Y. Meta-learning-based incremental few-shot object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021,32(4):2158-2169.
[11] LI J, CHIU B, FENG S, et al. Few-shot named entity recognition via meta-learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020,34(9):4245-4256.
[12] SUN Q, LIU Y, CHEN Z, et al. Meta-transfer learning through hard tasks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020,44(3):1443-1456.
[13] WANG Y, YAN J, YE X, et al. Few-shot transfer learning with attention mechanism for high-voltage circuit breaker fault diagnosis[J]. IEEE Transactions on Industry Applications, 2022,58(3):3353-3360.
[14] GAO F, CAI L, YANG Z, et al. Multi-distance metric network for few-shot learning[J]. International Journal of Machine Learning and Cybernetics, 2022,13(9):2495-2506.
[15] JIANG W, HUANG K, GENG J, et al. Multi-scale metric learning for few-shot learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020,31(3):1091-1102.
[16] LI P, TUZHILIN A. Dual metric learning for effective and efficient cross-domain recommendations[J]. IEEE Transactions on Knowledge and Data Engineering, 2021,35(1):321-334.
[17] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:4080-4090.
[18] SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:1199-1208.
[19] LI W, XU J, HUO J, et al. Distribution consistency based covariance metric networks for few-shot learning[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019,33(1):8642-8649.
[20] ZHANG H, ZU K, LU J, et al. EPSANet: An efficient pyramid squeeze attention block on convolutional neural network[C]// Proceedings of the Asian Conference on Computer Vision. 2022:1161-1177.
[21] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]// International Conference on Machine Learning. PMLR, 2017:1126-1135.
[22] RAVI S, LAROCHELLE H. Optimization as a model for few-shot learning[C]// International Conference on Learning Representations. 2017:24-26.
[23] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:7132-7141.
[24] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision (ECCV). 2018:3-19.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C].// Proceedings of the 31st International Conference on Neural Information Processing Systems. Curran Associates Inc, 2017:6000-6010.
[26] ZHU F D, FANG C W, MA K K. Pnen: Pyramid non-local enhanced networks[J]. IEEE Transactions on Image Processing, 2020,29:8831-8841.
[27] WANG Q L, WU B G, ZHU P E, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020:11534-11542.
[28] LIU J H, YANG H V, HE J, et al. Unbalanced fault diagnosis based on an invariant temporal-spatial attention fusion network[J]. Computational Intelligence and Neuroscience, 2022:1875011.
[29] WEI X K, WEI D H, SUO D, et al. Multi-target defect identification for railway track line based on image processing and improved YOLOv3 model[J]. IEEE Access, 2020,8:61973-61988.
[30] WANG H, LI M J, WAN Z B. Rail surface defect detection based on improved Mask R-CNN[J]. Computers and Electrical Engineering, 2022,102:108269.
[31] LI X, YANG X, MA Z, et al. Deep metric learning for few-shot image classification: a review of recent developments[J]. Pattern Recognition, 2023:109381.