[1] ROSIN P, COLLOMOSSE J. Image and Video-Based Art-istic Stylisation[M]. Springer, 2012.
[2] GATYS L A, ECKER A S, BETHGE M. A neural algorithm of artistic style[J]. arXiv preprint arXiv:1508.06576, 2015.
[3] JOHNSON J, ALAHI A, LI F F. Perceptual losses for real-time style transfer and super-resolution[J]. arXiv preprint arXiv:1603.08155, 2016.
[4] GATYS L A, ECKER A S, BETHGE M. Image style transfer using convolutional neural networks[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016:2414-2423.
[5] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv preprint arXiv:1411.1784, 2014.
[6] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[J]. arXiv preprint arXiv:1611.07004, 2018.
[7] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[J]. arXiv preprint arXiv:1703.10593, 2018.
[8] CHEN Y, LAI Y K, LIU Y J. CartoonGAN: Generative adversarial networks for photo cartoonization[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018:9465-9474.
[9] WANG X R, YU J Z. Learning to cartoonize using white-box cartoon representations[C]// Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. 2020:1120-1130.
[10]LEE H Y, TSENG H Y, HUANG J B, et al. Diverse image-to-image translation via disentangled representations[C]// Proceedings of the 2018 European Conference on Computer Vision. 2018:35-51.
[11]BIAN Y A, LI X, LIU Y C, et al. Parallel coordinate descent Newton method for efficient L1-regularized loss minimization[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(11):3233-3245.
[12]ZHANG R, ISOLA P, EFROS A A. Colorful image colorization[C]// 2016 European Conference on Computer Vision. 2016:649-666.
[13]GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014,2:2672-2680.
[14]SIMONYAN K, ZISSERMAN A. Very deep convolutional network for large-scale image recognition[J]. arXiv preprint arXiv:1409.1556, 2014.
[15]MAO X D, LI Q, XIE H R, et al. Least squares generative adversarial networks[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:2813-2821.
[16]RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer Assisted Intervention. 2015:234-241.
[17]YU J H, LIN Z, YANG J M, et al. Free-form image inpainting with gated convolution[C]// Proceedings of the 2019 IEEE /CVF International Conference on Computer Vision. 2019:4470-4479.
[18]TONG T, LI G, LIU X J, et al. Image super-resolution using dense skip connections[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. 2017:4809-4817.
[19]LAN Z Z, LIN M, LI X C, et al. Beyond Gaussian pyramid: Multi-skip feature stacking for action recognition[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. 2015:204-212.
[20]MIYATO T, KATAOKA T, KOYAMA M, et al. Spectral normalization for generative adversarial networks[J]. arXiv preprint arXiv:1803.05957, 2018.
[21]SHAHCHERAGHI Z, SEE J. On the effects of pre- and post-processing in video cartoonization with bilateral filters[C]// Proceedings of the 2013 IEEE International Conference on Signal and Image Processing Applications. 2013:37-42.
[22]HUANG X, BELONGIE S. Arbitrary style transfer in real-time with adaptive instance normalization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. 2017:1510-1519.
[23]KINGMA D P, BA J L. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[24]KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[C]// Proceedings of the 2018 IEEE International Conference on Learning Representations. 2018:324-330.
[25]WANG Z, BOVIK A C. A universal image quality index[J]. IEEE Signal Processing Letters, 2002,9(3):81-88.
[26]WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2004,13(4):600-612.
[27]HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]// Proceedings of the 31th International Conference on Neural Information Processing Systems. 2017:6629-6640.
|