Computer and Modernization ›› 2018, Vol. 0 ›› Issue (08): 21-.doi: 10.3969/j.issn.1006-2475.2018.08.005
Previous Articles Next Articles
Received:
2017-10-31
Online:
2018-09-11
Published:
2018-09-11
CLC Number:
WU Wen-ya, CHEN Yu-feng, XU Jin-an, ZHANG Yu-jie. Review of Chinese Entity Relation Extraction[J]. Computer and Modernization, 2018, 0(08): 21-.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.c-a-m.org.cn/EN/10.3969/j.issn.1006-2475.2018.08.005
[1] 百度百科. 命名实体识别[EB/OL]. https://baike.baidu.com/item/%E5%91%BD%E5%90%8D%E5%AE%9E%E4%BD%93%E8%AF%86%E5%88%AB/6968430, 2017-10-28 [2] NYU. MUC-6[EB/OL]. http://cs.nyu.edu/cs/faculty/grishman/muc6.html, 1996-04-25. [3] Chinchor N, Marsh E. Muc-7 information extraction task definition[C]// Proceedings of the 7th Message Understanding Conference(MUC-7). 1998:359-367 [4] 〖KG-*3Chinchor N A. Overview of MUC-7/MET-2[EB/OL]. https://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/muc_7_proceedings/overview.html, 2005-05-08 [5] Linguistic Data Consortium. The Automatic Content Extraction(ACE) Projects[EB/OL]. http://www.ldc.upenn.edu/Projects/ACE/, 2007-01-11 [6] McNamee P, Dang H T, Simgpson H, et al. An evaluation of technologies for knowledge base population[C]// Proceedings of the 7th International Language Resources and Evaluation Conference. 2010:369-372. [7] Hendrickx l, Kim S N, Kozareva Z, et al. Semeval-2010 task 8: Multi-way classification of semantic relation between pairs of nominals[C]// Proceedings of the Workshop on Semantic Evaluations:Recent Achievements and Future Directions. 2009:94-99. [8] 刘绍毓,李弼程,郭志刚,等. 实体关系抽取研究综述[J]. 信息工程大学学报, 2016,17(5):541-547. [9] 张传岩. Web实体活动与实体关系抽取研究[D]. 济南:山东大学, 2012. [10]李天颍,刘磷,赵德旺,等. 一种基于依存文法的需求文本策略依赖关系抽取方法[J]. 计算机学报, 2013,36(1):54-62. [11]徐健,张智雄,吴振新. 实体关系抽取的技术方法综述[J]. 现代图书情报技术, 2008,24(8):18-23. [12]Appelt D E, Hobbs J R, Bear J, et al. SRI international FASTUS system:MUC-6 test results and analysis[C]// Proceedings of the 6th Message Understanding Conference(MUC-6). 1995:237-248. [13]Yangarber R, Grishman R. NYU: Description of the Proteus/PET system as used for MUC-7 ST[C]// Proceedings of the 7th Message Understanding Conference. 1998:1-7. [14]周诗咏. Web环境下基于语义模式匹配的实体关系提取方法的研究[D]. 沈阳:东北大学, 2009. [15]车万翔,刘挺,李生. 实体关系自动抽取[J]. 中文信息学报, 2005,19(2):l-6. [16]黄鑫,朱巧明,钱龙华,等. 基于特征组合的中文实体关系抽取[J]. 微电子学与计算机, 2010,27(4):198-200. [17]郭喜跃,何婷婷,胡小华,等. 基于句法语义特征的中文实体关系抽取[J]. 中文信息学报, 2014,28(6):183-189. [18]虞欢欢,钱龙华,周国栋,等. 基于合一句法和实体语义树的中文语义关系抽取[J]. 中文信息学报, 2010,24(5):17,23. [19]Zhou Guodong, Qian Longhua, Fan Jianxi. Tree kernel-based semantic relation extraction with rich syntactic and semantic information[J]. Information Sciences, 2010,180(8):313-1325. [20]王敏. 基于多代理策略的中文实体关系抽取[D]. 大连:大连理工大学, 2011. [21]陈鹏,郭剑逸,余正涛,等. 融合领域知识短语树核函数的中文领域实体关系抽取[J]. 南京大学学报(自然科学版), 2015,51(1):181-186. [22]陈鹏. 基于多核融合的中文领域实体关系抽取研究[D]. 昆明:昆明理工大学, 2014. [23]郭剑毅,陈鹏,余正涛,等. 基于多核融合的中文领域实体关系抽取[J]. 中文信息学报, 2016,30(1):24-29. [24]Brin S. Extracting patterns and relations from the World Wide Web[C]// WebDB Workshop at the 6th International Conference on Extended Database Technology. 1999:172-183. [25]Yu Li, Lu Feng, Liu Xiliang. A bootstrapping based approach for open geo-entity relation extraction[J]. Acta Geodaeticaet Cartographica Sinica, 2016,45(5):616-622. [26]Zhang Zhu. Weakly-supervised relation classification for information extraction[C]// Proceedings of the 13th ACM International Conference on Information and Knowledge Management. 2004:581-588. [27]张一昌. 基于co-training与核函数的关系抽取技术研究[D]. 北京:北京邮电大学, 2015. [28]〖JP3〗罗斌,唐红艳,王志豪,等. 基于图的微博广告文本识别[J]. 厦门大学学报(自然科学版), 2017,56(5):724-728.〖JP〗 [29]郝建柏. 基于图的半监督学习模型研究与分类器设计[D]. 合肥:中国科学技术大学, 2009. [30]Hasegawa T, Sekine S, Grishman R. Discovering relations among named entities from large corpora[C]// Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. 2004: Article No. 415. [31]Rink B, Harabagiu S. A generative model for unsupervised discovery of relations and argument classes from clinical texts[C]// Proceedings of the Conference on Empirical Methods in Natural Language Processing. 2011:519-528. [32]孙勇亮. 开放领域的中文实体无监督关系抽取[D]. 上海:华东师范大学, 2014. [33]王晶. 无监督的中文实体关系抽取研究[D]. 上海:华东师范大学, 2012. [34]施琦. 无监督中文实体关系抽取研究[D]. 北京:中国地质大学(北京), 2015. [35]Kang Tian, Zhang Shaodian, Tang Youlan, et al. EliIE: An open-source information extraction system for clinical trial eligibility criteria[J]. Journal of the American Medical Informatics Association, 2017:24(6):1062-1071.. [36]Imani M. Evaluating Open Relation Extraction over Conversational Texts[D]. University of British Columbia, 2014. [37]Wang M, Li L, Huang F. Semi-supervised Chinese open entity relation extraction[C]// IEEE International Conference on Cloud Computing and Intelligence Systems. 2015:415-420. [38]Corro L D, Gemulla R. ClausIE: Clause-based open information extraction[C]// Proceedings of the 22nd International Conference on World Wide Web. 2013: 355-366. [39]Melamud O, Berant J, Dagan J, et al. A two level model for context sensitive inference rules[C]// Meeting of the Association for Computational Linguistics. 2014:1331-1340. [40]Han Xianpei, Sun Le. Context-sensitive inference rule discovery: A graph-based method[C]// Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. 2016:2902-2911. [41]Banko M, Cafarella M J, Soderland S, et al. Open information extraction from the Web[C]// Proceedings of IJCAI. 2007:2670-2676. [42]Fei Wu, Weld D S. Autonomously semantifying Wikipedia[C]// Proceedings of the 16th ACM Conference on Information and Knowledge. 2007:41-50. [43]秦兵,刘安安,刘挺. 无指导的中文开放式实体关系抽取[J]. 计算机研究与发展, 2015,52(5):1029-1035. [44]郭喜跃. 面向开放领域文本的实体关系抽取[D]. 武汉:华中师范大学, 2016. [45]李颖,郝晓燕,王勇. 中文开放式多元实体关系抽取[J]. 计算机科学, 2017,44(S1):80-83. [46]Pasca M. Organizing and searching the World Wide Web of facts-step two: Harnessing the wisdom of the crowds[C]// Proceedings of the 16th International Conference on World Wide Web. 2007:101-110. [47]Socher R, Huval B, Manning C D. Semantic compositionality through recursive matrix-vector spaces[C]// Proceedings of 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2012:1201-1211. [48]Zeng Daojian, Liu Kang, Lai Siwei, et al. Relation classification via convolutional deep neural network[C]// Proceedings of International Conference on Computational Linguistics. 2014:2335-2344. [49]Miwa M, Bansa M. End-to-end relation extraction using LSTMs on sequences and tree structures[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016:1105-1116. [50]Lin Yankai, Liu Zhiyua, Sun Maosong. Neural relation extraction with multi-lingual attention[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. 2017:34-43. [51]Lin Yankai, Shen Shiqi, Liu Zhiyuan, et al. Neural relation extraction with selective attention over instances[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. 2016:2124-2133. [52]孙建东,顾秀森,李彦,等. 基于COAE2016数据集的中文实体关系抽取算法研究[J]. 山东大学学报(理学版), 2017,52(9):7-12. [53]林衍凯,刘知远. 基于深度学习的关系抽取[EB/OL]. http://www.cipsc.org.cn/qngw/?p=890, 2016-09-14. [54]刘绍毓. 实体关系抽取关键技术研究[D]. 郑州:解放军信息工程大学, 2015. |
[1] | QI Xian, LIU Daming, CHANG Jiaxin. Multi-view 3D Reconstruction Based on Improved Self-attention Mechanism [J]. Computer and Modernization, 2024, 0(11): 106-112. |
[2] | CHEN Kai1, LI Yiting1, 2, QUAN Huafeng1. A River Discarded Bottles Detection Method Based on Improved YOLOv8 [J]. Computer and Modernization, 2024, 0(11): 113-120. |
[3] | YANG Jun1, HU Wei1, ZHU Wenfu2. Visual SLAM Loop Closure Detection Algorithm Based on Improved MobileNetV3 [J]. Computer and Modernization, 2024, 0(10): 21-26. |
[4] | WANG Yingying, HAO Xiao. Fine-grained Image Classification Based on Res2Net and Recursive Gated Convolution [J]. Computer and Modernization, 2024, 0(10): 74-79. |
[5] | SHI Xingyu1, LI Qiang2, ZHUANG Li3, LIANG Yi3, WANG Qiulin3, CHEN Kai3, WU Chenzhou3, CHANG Sheng1. Object Detection Models Distillation Technique for Industrial Deployment [J]. Computer and Modernization, 2024, 0(10): 93-99. |
[6] | ZHANG Ze1, ZHANG Jianquan2, 3, ZHOU Guopeng2, 3. Camera Module Defect Detection Based on Improved YOLOv8s [J]. Computer and Modernization, 2024, 0(09): 107-113. |
[7] | CHENG Yazi1, LEI Liang1, 2, CHEN Han1, ZHAO Yiran1. Multi-scale Depth Fusion Monocular Depth Estimation Based on Transposed Attention [J]. Computer and Modernization, 2024, 0(09): 121-126. |
[8] | CHENG Meng, LI Hao. Improved Deciduous Tree Nest Detection Method Based on YOLOv5s [J]. Computer and Modernization, 2024, 0(08): 24-29. |
[9] | WANG Mengxi, LI Jun. Review of Fall Detection Technologies for Elderly [J]. Computer and Modernization, 2024, 0(08): 30-36. |
[10] | SHI Xianwei1, FAN Xin2. Semantic Segmentation of Video Frame Scene Based on Lightweight [J]. Computer and Modernization, 2024, 0(08): 49-53. |
[11] | XU Xin’ai, LI Gang. An Image Generation Method of Classroom Expression Images [J]. Computer and Modernization, 2024, 0(08): 88-91. |
[12] | GAO Shuaipeng, WANG Yifan. Survey on Group-level Emotion Recognition in Images [J]. Computer and Modernization, 2024, 0(08): 98-107. |
[13] | HUANG Wendong, WANG Yifan. Survey on Multimodal Information Processing and Fusion Based on Modal Categories [J]. Computer and Modernization, 2024, 0(07): 47-62. |
[14] | WU Li1, ZHANG Zhenghao2, GE Caicheng2, YU Jun2. Lane Line Detection Algorithm Based on Improved SCNN Network [J]. Computer and Modernization, 2024, 0(07): 87-92. |
[15] | ZHANG Ke1, AI Zhongliang2, LIU Zhonglin3, GU Pingli1, LIU Xuelin4. Judicial Argumentation Understanding Method Based on Multiplet Loss [J]. Computer and Modernization, 2024, 0(06): 115-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||