[1] CHANDRA M A, BEDI S S. Survey on SVM and their application in image classification[J]. International Journal of Information Technology, 2021,13(5):1-11.
[2] 任梦茹,侯宏录,韩修来. Gabor 特征结合快速 HOG 特征的行人检测[J]. 计算机系统应用, 2021,30(10):259-263.
[3] TANG S, ANDRILUKA M, SCHIELE B. Detection and tracking of occluded people[J]. International Journal of Computer Vision, 2014,110:58-69.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014:580-587.
[5] GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV). IEEE, 2015:1440-1448.
[6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(6):1137-1149.
[7] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// The 14th European Conference on Computer Vision-ECCV. Springer, 2016:21-37.
[9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. IEEE, 2017:2980-2988.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of 2016 IEEE International Conference on Computer Vision and Pattern Recognition. IEEE, 2016:779-788.
[11] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of 2017 IEEE International Conference on Computer Vision and Pattern Recognition. IEEE, 2017:7263-7271.
[12] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[J]. arXiv preprint arXiv: 2004.10934, 2004.
[14] JOCHER G, STOKEN A, BOROVEC J, et al. Ultralytics/YOLOv5:v3.0[EB/OL]. [2024-06-05]. https://github.com/ultralytics/yolov5/tree/v3.0.
[15] LI C H, LI L, JIANG H T, et al. YOLOv6: A single-stage object detection framework for industrial applications[J]. arXiv preprint arXiv:2209.02976, 2022.
[16] 邓杰,万旺根. 基于改进YOLOv3的密集行人检测[J]. 电子测量技术, 2021,44(11):90-95.
[17] 李兰,刘杰,张洁. 基于 YOLOv4 改进算法的复杂行人检测模型研究[J]. 计算机工程与科学, 2022,22(8):1449-1456.
[18] CHEN Y, ALIFU K, LIN W. CA-YOLOv5 for crowded pedestrian detection[J]. Computer Engineering Application, 2022,1(1):1-10.
[19] 梁秀满,周佳润,杨若兰. LPD-YOLO: 轻量级遮挡行人检测模型[J]. 计算机工程与科学, 2023,45(12):2197-2205.
[20] 黄诗佳,蒋碧波,杨超,等. 基于改进YOLOv7的密集行人检测算法[J/OL]. 湖北大学学报(自然科学版):1-9[2024-06-05].008.html.
[21] LI X Z. Efficient real-time dense pedestrian detector based on improved YOLOv7-tiny[C]// Proceedings of the 2023 7th International Conference on Advances in Image Processing. ACM, 2023:55-67.
[22] CUI C, GAO T Q, WEI S Y, et al. PP-LCNet: A lightweight CPU convolutional neural network[J]. arXiv preprint arXiv:2109.15099, 2021.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2023:7464-7475.
[24] ZHANG X D, ZENG H, GUO S, et al. Efficient long-range attention network for image super-resolution[C]// European Conference on Computer Vision-ECCV2022. Springer, 2022:649-667.
[25] CHEN J, MAI H S, LUO L B, et al. Effective feature fusion network in BIFPN for small object detection[C]// 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021:699-703.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision (ECCV). Springer, 2018:3-19.
[27] ZHU X Z, HU H, LIN S, et al. Deformable convnets v2: More deformable, better results[C]// Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2019:9308-9316.
[28] YANG G Y, LEI J, ZHU Z K, et al. AFPN: Asymptotic feature pyramid network for object detection[C]// 2023 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2023:1-6.