[1] 路卫忠,宋正伟,吴宏杰,等.基于深度学习的人体行为检测方法研究综述[J]. 计算机工程与科学, 2021,43(12):2206-2215.
[2] SARABU A, SANTRA A K. Human action recognition in videos using convolution long short-term memory network with spatial-temporal networks[J]. Emerging Science Journal, 2021,5(1):25-33.
[3] PANG C, LU X Q, LYN L. Skeleton-based action recognition through contrasting two-stream spatial-temporal networks[J].IEEE Transactions on Multimedia, 2023,25(1):8699-8711.
[4] VARSHNEY N, BAKARIYA B. Deep convolutional neural model for human activities recognition in a sequence of video by combining multiple CNN streams[J]. Multimedia Tools and Applications, 2022,81(29):42117-42129.
[5] LIANG C W, LU J, YAN W Q. Human Action Recognition From Digital Videos Based on Deep Learning[C]// Proceedings of the 5th International Coference on Control and Computer Vision. ACM, 2022:150-155.
[6] HUANG Z, TAO M Y, AN N,et al. ER-C3D: Enhancing R-C3-D Network With Adaptive Shrinkage and Symmetrical Multiscale for Behavior Detection[J]. IEEE Transactions on Computational Social Systems, 2024,11(5):5997
-6009.
[7] LI C Y, LI L L, JIANG H L, et al. YOLOv6: A single-stage object detection framework for industrial applications [J]. arXiv preprint arXiv:2209.02976, 2022.
[8] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, 2022: 7464-7475.
[9] VIKASH S, MUNG C, PRATEEK M. SSD: A unified framework for self-supervised outlier detection[J]. arXiv preprint arXiv:2103.12051, 2021.
[10] CAI Z W, VASCONCELOS N. Cascade R-CNN: High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(5):1483-1498.
[11] LI J N, LIANG X D, SHEN S M,et al. Scale-aware fast R-CNN for pedestrian detection[J]. IEEE Transactions on Multimedia, 2018,20(4):985-996.
[12] HE K M, GEORGIA G, DOLLAR P, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision. IEEE, 2019:9157-9166.
[13] 董琪琪,刘剑飞,郝禄国,等. 基于改进SSD算法的学生课堂行为状态识别[J]. 计算机工程与设计, 2021,42(10):2924-2930.
[14] 操丹. 基于目标检测算法的学生课堂行为状态识别研究[D]. 天津:河北工业大学, 2023.
[15] 杨颜茜. 基于改进YOLOv8s的学生课堂行为识别研究[J]. 现代计算机, 2024,30(2):33-38.
[16] CHEN H H,GUAN J S. Teacher-student behavior recognition in classroom teaching based on improved YOLO-v4 and internet of things technology[J]. Electronics, 2022,11(23):3998-3998.
[17] ZHANG Y W, WU Z, CHEN X J, et al. Classroom behavior recognition based on improved YOLOv3[C]// International Conference on Artificial Intelligence and Education. IEEE, 2020:93-97.
[18] 廖鹏,刘宸铭,苏航,等. 基于深度学习的学生课堂异常行为检测与分析系统[J]. 电子世界,2018,54(8): 97-98.
[19] 谭斌,杨书焓. 基于Faster R-CNN的学生课堂行为检测算法研究[J]. 现代计算机(专业版), 2018,17(33):45-47.
[20] WOO S, PARK J C, LEE J Y, et al. CBAM: Convolutional block attention module[C]// Proceedings of the European Conference on Computer Vision. ACM, 2018:3-19.
[21] WANG J Q, CHEN K, XU R, et al. Carafe: Content-aware reassembly Of features[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019:3007-3016.
[22] ZHANG H, XU C, ZHANG S J. Inner-IoU: More effective intersection over union loss with auxiliary bounding box[J]. arXiv preprint arXiv:2311.0287, 2023.
[23] MA S L, XU Y. MPDIoU: A loss for efficient and accurate bounding box regression[J]. arXiv preprint arXiv:2307.076
62, 2023.
[24] YANG F, WANG T. SCB-Dataset3: A benchmark for detecting student classroom behavior[J]. arXiv preprint arXiv:2310.02522, 2023.
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks.[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. IEEE. 2018:7132-7141.
[26] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C]// Computer Vision and Pattern Recognition. IEEE, 2020:11531-11539.
[27] REDMON J, FARHADI A. YOLOv3:An Incremental Improvement[J]. arXiv preprint arXiv:1804.02767, 2018.
[28] ALEXEY B, WANG C Y, LIAO H Y M. YOLOv4: Optimal Speed and Accuracy of Obj-ect Detection[J]. arXiv preprint arXiv:2004.10934, 2020.
[29] CAI L F,TANG B, XU Y F, et al. Object detection algorithm based on improved YOLOv5[C]// 5th International Conference on Computer Information Science and Application Technology. 2022:124514H1-124514H7.