DSA De-artifacting Algorithm Based on Deformation Field Registration
(1. School of Physics and Technology, Wuhan University, Wuhan 430072, China; 2. Department of Neurosurgery, Wuhan University Renmin Hospital, Wuhan 430072, China)
WANG Dongfang1, YANG Yan1, ZHANG Dong1, HAN Wenrui2, LI Mingchang2. DSA De-artifacting Algorithm Based on Deformation Field Registration[J]. Computer and Modernization, 2025, 0(05): 86-90.
[1] 李致勋. 2D/3D 冠状动脉血管分割与配准方法研究[D]. 哈尔滨:哈尔滨工业大学, 2017.
[2] 李豪. 肝癌肝动脉DSA图像质量的影响因素分析[J]. 医疗装备, 2023,36(1):30-33.
[3] 成铭扬. X射线双能DSA减影算法研究[D]. 北京:清华大学,2021.
[4] SHI L X, LU M H, ROBERT N B, et al. Characterization and potential applications of a dual-layer flat-panel detector[J]. Medical Physics, 2020,47(8):3332-3343.
[5] LU M H, WANG A, SHAPIRO E, et al. Dual energy imaging with a dual layer flat panel detector[C]// SPIE Medical Imaging Conference on Physics of Medical Imaging(Medical Imaging 2019). SPIE, 2019:1094815.1-1094815.10.
[6] ZHAO C M, LIU S Z, WANG W Y, et al. Effects of X-ray scatter in quantitative dual-energy imaging using dual-layer flat panel detectors[C]// Physics of Medical Imaging, Part One of Two Parts: Conference on Medical Imaging: Physics of Medical Imaging(Medical Imaging 2021). SPIE, 2021: 115952A.1-115952A.6.
[7] 陈楷丰. 基于非线性滤波的冠脉造影图像增强算法的研究[D]. 大连:大连海事大学, 2016.
[8] LIAO M, ZHAO Y Q, WANG X H, et al. Retinal vessel enhancement based on multi-scale top-hat transformation and histogram fitting stretching[J]. Optics and Laser Technology, 2014,58(1):56-62.
[9] 苏天奇. 脑部DSA去伪影增强算法的研究及实现[D]. 石家庄:河北大学, 2017.
[10] 宋雨. 基于深度学习的低剂量DSA算法研究[D]. 南京:东南大学, 2019.
[11] UEDA D, KATAYAMA Y, YAMAMOTO A, et al. Deep learning-based angiogram generation model for cerebral angiography without misregistration artifacts[J]. Radiology, 2021,299(3):675-681.
[12] CAI C W, WANG L D, YING S H. Symmetric diffeomorphic image registration with multi-label segmentation masks[J]. Mathematics, 2022,10(11):1946. DOI: 10.3390/math
10111946.
[13] BALAKRISHNAN G, ZHAO A, SABUNCU M R, et al. VoxelMorph: A learning framework for deformable medical image registration[J]. IEEE Transactions on Medical Imaging, 2019,28(8):1788-1800.
[14] DALCA V A, BALAKRISHNAN G, GUTTAG J, et al. Unsupervised learning of probabilistic diffeomorphic registration for images and surfaces[J]. Medical Image Analysis, 2019,57(1):226-236.
[15] TONY M, ALBERT C. Fast symmetric diffeomorphic image registration with convolutional neural networks[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR 2020). IEEE, 2020:4643-4652.
[16] 陈宇,万辉帆,邹茂扬. 基于Wasserstein Gan的无监督单模配准方法[J]. 南方医科大学学报, 2021,41(9):1366-1373.
[17] 贺建安. 基于冠脉CTA与DSA图像的3D/2D血管弹性配准研究[D]. 南京:东南大学, 2022.
[18] VINCENT H, THEO W, IHOR S, et al. Automated image registration of cerebral digital subtraction angiography[J]. International Journal of Computer Assisted Radiology and Surgery, 2023,19(1):147-150.
[19] 刘强. 冠脉造影图序列的生理运动补偿减影及血管的三维重建[D]. 武汉:华中科技大学, 2020.
[20] ZHANG C, LIU J, BIAN L, et al. FMB: Dual-view fusion and registration of 2D DSA images and 3D MRA images for neurointerventional-based procedures[J]. Computers in Biology and Medicine, 2024,171(1). DOI: 10.1016/j.compbiomed.2024.107987.
[21] ZHAO S Y, DONG Y, CHANG E, et al. Recursive cascaded networks for unsupervised medical image registration[C]// 2019 IEEE/CVF International Conference on Computer Vision. IEEE, 2019:10599-10609.
[22] RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015). Springer, 2015:234-241.
[23] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]// Proceedings of the 29th International Conference on Neural Information Processing Systems (NIPS’15). ACM, 2015:2017-2025.
[24] KIM B, KIM J, LEE J G, et al. Unsupervised deformable image registration using cycle-consistent CNN[C]// 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2019). Springer, 2019:166-174.
[25] KUANG D Y. Cycle-consistent training for reducing negative jacobian determinant in deep registration networks[C]// Simulation and Synthesis in Medical Imaging Conference(MICCI 2019). Springer, 2019:120-129.
[26] XU B, WANG N Y, CHEN T Q, et al. Empirical evaluation of rectified activations in convolutional network[C]// International Conference on Machine Learning(ICML 2015). IMLS, 2015:95-99.
[27] JI H Z, LI Y S, DONG E Q, et al. A non-rigid image registration method based on multi-level B-spline and L2-regularization[J]. Signal, Image and Video Processing, 2018,12(6):1217-1225.