PRNG Algorithm Based on Improved Piecewise Logistic Mapping
(1. School of Computer, Civil Aviation Flight University of China, Deyang 618000, China; 2. School of Science, Civil Aviation Flight University of China, Deyang 618000, China)
HUA Man1, LI Jingchang1, LI Yanling2. PRNG Algorithm Based on Improved Piecewise Logistic Mapping[J]. Computer and Modernization, 2025, 0(03): 113-118.
[1] DONG E Z, YUAN M F, DU S Z, et al. A new class of Hamiltonian conservative chaotic systems with multistability and design of pseudo-random number generator[J]. Applied Mathematical Modelling, 2019,73:40-71.
[2] LIAO T L, WAN P Y, YAN J J. Design of synchronized large-scale chaos random number generators and its application to secure communication[J]. Applied Sciences, 2019, 9(1). DOI: 10.3390/app9010185.
[3] XU H, TONG X J, ZHANG M, et al. Dynamical analysis and homogenization process of unimodal chaotic mapping utilized for pseudo-random sequences[J]. International Journal of Bifurcation and Chaos, 2018,28(14). DOI:10.1142/S0218127418501729.
[4] RIZK-ALLAH R M, ABDULKADER H, ELATIF S S A, et al. A novel binary hybrid PSO-EO algorithm for cryptanalysis of internal state of RC4 cipher[J]. Sensors, 2022,22(10). DOI: 10.3390/s22103844.
[5] 王佳琪,张淼,佟晓筠,等. 基于分形编码和 LIC 混沌系统的图像压缩加密算法[J]. 计算机应用研究, 2022,39(12):3770-3775.
[6] LIN Z S, WANG G Y, WANG X Y, et al. Security performance analysis of a chaotic stream cipher[J]. Nonlinear Dynamics, 2018,94:1003-1017.
[7] PATIDAR V, SUD K K, PAREEK N K. A pseudo random bit generator based on chaotic logistic map and its statistical testing[J]. Informatica, 2009,33(4):441-452.
[8] BEHNIA S, AKHSHANI A, AHADPOUR S, et al. A fast chaotic encryption scheme based on piecewise nonlinear chaotic maps[J]. Physics Letters A, 2007,366(4-5):391-396.
[9] PHATAK S C, RAO S S. Logistic map: A possible random-number generator[J]. Physical Review E, 1995,51(4): 3670-3678.
[10] KOCAREV L, JAKIMOSKI G. Logistic map as a block encryption algorithm[J]. Physics Letters A, 2001,289(4-5):199-206.
[11] HABUTSU T, NISHIO Y, SASASE I. A secret cryptosystem by it. erating a chaotic map[C]// Advances in Cryptology-EuroCrypt_91. 1991:127-140.
[12] 陈志刚,梁涤青,邓小鸿,等. Logistic 混沌映射性能分析与改进[J]. 电子与信息学报, 2016,38(6):1547-1551.
[13] FAN J L, ZHANG X F. Piecewise logistic chaotic map and its performance analysis[J]. ACTA Electonica Sinica, 2009,37(4). DOI:10.1016/j.apm.2007.10.019.
[14] WANG Y, LIU Z L, MA J B, et al. A pseudorandom number generator based on piecewise logistic map[J]. Nonlinear Dynamics, 2016,83:2373-2391.
[15] 刘公致,吴琼,王光义,等. 改进型 Logistic 混沌映射及其在图像加密与隐藏中的应用[J]. 电子与信息学报, 2022,44(10):3602-3609.
[16] WANG M X. The diffusive logistic equation with a free boundary and sign-changing coefficient[J]. Journal of Differential Equations, 2015,258(4):1252-1266.
[17] LI C Q, XIE T, LIU Q, et al. Cryptanalyzing image encryption using chaotic logistic map[J]. Nonlinear Dynamics, 2014,78(2):1545-1551.
[18] JIAO L, HAO Y L, FENG D G. Stream cipher designs: A review[J]. Science China Information Sciences, 2020,63(3):80-104.
[19] LAMBIĆ D. Security analysis and improvement of the pseudo-random number generator based on piecewise logistic map[J]. Journal of Electronic Testing, 2019,35(4):519-527.
[20] LI M, LU D D, XIANG Y, et al. Cryptanalysis and improvement in a chaotic image cipher using two-round permutation and diffusion[J]. Nonlinear Dynamics, 2019,96:31-47.
[21] PANWAR K, PURWAR R K, JAIN A. Cryptanalysis and improvement of a color imageencryption scheme based on DNA sequences and multiple 1D chaotic maps[J]. International Journal of Bifurcation and Chaos, 2019, 29(8). DOI: 10.1142/S0218127419501037.
[22] WANG L Y, CHENG H. Pseudo-random number generator based on logistic chaotic system[J]. Entropy, 2019, 21(10). DOI: 10.3390/e21100960.
[23] KNUTH D. Deciphering a linear congruential encryption[J]. IEEE Transactions on Information Theory, 1985,31(1):49-52.
[24] ZHAO Y, LIU L F. A bit shift image encryption algorithm based on double chaotic systems[J]. Entropy, 2021,23(9). DOI:10.3390/e23091127.
[25] LI S L, LIU Y Z, REN F Y, et al. Design of a high throughput pseudorandom number generator based on discrete hyper-chaotic system[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022,70(2):806-810.
[26] CHEN R, LI X M, TENG L, et al. An image encryption algorithm based on the LSCMM chaotic map and bidirectional dynamic diffusion[J]. Multimedia Tools and Applications, 2024,83(2):3681-3706.
[27] BELAZI A, KHAN M, EL-LATIF A A A, et al. Efficient cryptosystem approaches: S-boxes and permutation-substit
ution-based encryption[J]. Nonlinear Dynamics, 2017,87:
337-361.
[28] ÇAVUŞOĞLU Ü, KAÇAR S, PEHLIVAN I, et al. Secure image encryption algorithm design using a novel chaos based S-Box[J]. Chaos, Solitons & Fractals, 2017,95:92-101.
[29] 李付鹏,刘敬彪,王光义,等. 基于混沌集的图像加密算法[J]. 电子与信息学报, 2020,42(4):981-987.
[30] XU L, LI Z, LI J, et al. A novel bit-level image encryption algorithm based on chaotic maps[J]. Optics and Lasers in Engineering, 2016,78:17-25.
[31] OBERHOLZER M, ÖSTREICHER M, CHRISTEN H, et al. Methods in quantitative image analysis[J]. Histochemistry and Cell Biology, 1996,105:333-355.
[32] FATEMI-BEHBAHANI E, ANSARI-ASL K, FARSHIDI E. A new approach to analysis and design of chaos-based random number generators using algorithmic converter[J]. Circuits, Systems, and Signal Processing, 2016,35:3830-3846.
[33] AKHSHANI A, AKHAVAN A, MOBARAKI A, et al. Pseudo random number generator based on quantum chaotic map[J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19(1):101-111.
[34] PATIDAR V, SUD K K, PAREEK N K. A pseudo random bit generator based on chaotic logistic map and its statistical testing[J]. Informatica, 2009,33(4):441-452.
[35] XU D, TAMIR D E. Pseudo-random number generators based on the Collatz conjecture[J]. International Journal of Information Technology, 2019,11(3):453-459.
[36] LIU L F, MIAO S X, CHENG M F, et al. A pseudorandom bit generator based on new multi-delayed Chebyshev map[J]. Information Processing Letters, 2016,116(11):674-681.