XIAO Junbi, FU Tianqi. Real-Time Traffic Classification Method Based on High-dimensional Feature#br#
Dimensionality Reduction and Clustering[J]. Computer and Modernization, 2025, 0(01): 80-85.
[1] ZHAO J J, JING X Y, YAN Z, et al. Network traffic classification for data fusion: A survey[J]. Information Fusion, 2021,72:22-47.
[2] GRIMAUDO L, MELLIA M, BARALIS E. Hierarchical learning for fine grained internet traffic classification[C]// Proceedings of the 2012 8th International Wireless Communications and Mobile Computing Conference. IEEE, 2012:463-468.
[3] DONG S, JAIN R. RETRACTED: Flow online identification method for the encrypted Skype[J]. Journal of Network and Computer Applications, 2019,132(C):75-85.
[4] DIVAKARAN D M, SU L, LIAU Y S, et al. SLIC: Self-learning intelligent classifier for network traffic[J]. Computer Networks, 2015,91:283-297.
[5] BUJLOW T, CARELA-ESPAÑOL V, BARLET-ROS P. Independent comparison of popular DPI tools for traffic classification[J]. Computer Networks, 2015,75:75-89.
[6] ALZOMAN R M, ALENAZI M J F. A comparative study of traffic classification techniques for smart city networks[J]. Sensors, 2021,21(46). DOI: 10.3390/s21144677.
[7] TAUNK K, DE S, VERMA S, et al, A brief review of nearest neighbor algorithm for learning and classification[C]// 2019 International Conference on Intelligent Computing and Control Systems (ICCS). IEEE, 2019:1255-1260.
[8] WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]// The 2017 15th IEEE International Conference on Intelligence and Security Informatics. IEEE, 2017:43-48.
[9] JANG Y, KIM N, LEE B D. Traffic classification using distributions of latent space in software-defined networks: An experimental evaluation[J]. Engineering Applications of Artificial Intelligence, 2023,119. DOI: 10.1016/j.engappai.2022.105736.
[10] D’ANGELO G, PALMIERI F. Network traffic classification using deep convolutional recurrent autoencoder neural networks for spatial-temporal features extraction[J]. Journal of Network and Computer Applications, 2021,173. DOI: 10.1016/j.jnca.2020.102890.
[11] REZAEI S, LIU X. Multitask learning for network traffic classification[C]// 2020 29th International Conference on Computer Communications and Networks. IEEE, 2020:1-9.
[12] 王一丰,郭渊博,陈庆礼,等. 基于对比学习的细粒度未知恶意流量分类方法[J], 通信学报, 2022,43(10):12-25.
[13] SCHUTZE H, HULL D A. PEDERSEN J O. A comparison of classifiers and document representations for the routing problem[C]// Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieva. ACM, 1995:229-237.
[14] PEARSON K. On line and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901,2(11):559-572.
[15] FISHER R. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936,7(2):179-188.
[16] MAATEN L V D, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008,9(86): 2579-2605.
[17] MCINNES L, HEALY J, SAUL N. UMAP: Uniform manifold approximation and projection[J]. Journal of Open Source Software, 2018,3(29). DOI: 10.21105/joss.00861.
[18] PETRINI L. Breaking the curse of dimensionality in deep neural networks by learning invariant representations[J]. arXiv preprint arXiv:2310.16154, 2023.
[19] JIA W K, SUN M, LIAN J, et al. Feature dimensionality reduction: A review[J]. Complex & Intelligent Systems, 2022,8:2663-2693.
[20] JACOBSON V. Congestion avoidance and control[C]// Symposium Proceedings on Communications Architectures and Protocols. ACM, 1998,18(4):314-329.
[21] PACHECO F, EXPOSITO E, GINESTE M, et al. Towards the deployment of machine learning solutions in network traffic classification: A systematic survey[J], IEEE Communications Surveys & Tutorials, 2019,21(2):1988-2014.
[22] BENGIO Y, COURVILLE A, VINCENT P. Representation learning: A review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35(8):1798-1828.
[23] ALAMI A E, BAHAJ M, KHOURDIFI Y. Supply of a key value database Redis in-memory by data from a relational database[C]// 2018 19th IEEE Mediterranean Electrotechnical Conference. IEEE, 2018:46-51.
[24] ZHOU H Y, WANG Y, LEI X C, et al. A method of improved CNN traffic classification[C]// 2017 13th International Conference on Computational Intelligence and Security. IEEE, 2017:177-181.
[25] ARLIA D, COPPOLA M. Experiments in parallel clustering with DBSCAN[C]// Proceedings of the 7th International Euro-Par Conference Manchester on Parallel Processing. Springer, 2001:326-331.
[26] 王伟. 基于深度学习的网络流量分类及异常检测方法研究[D]. 安徽:中国科学技术大学, 2018.
[27] 傅天奇. UPC-APPlev2023网络流量数据集[EB/OL]. (2023-11-21)[2023-11-21]. https://github.com/xwz0011
/UPCAPPlev2023.git.
[28] LIU Y C, LI M, XIONG H, et al. Understanding of internal clustering validation measures[C]// 2010 IEEE International Conference on Data Mining. IEEE, 2010:911-916.