Cost-sensitive Convolutional Neural Network for Encrypted Traffic Classification#br#
#br#
(1. College of Information Engineering, East China University of Technology, Nanchang 330013, China; 2. Jiangxi Key Laboratory of Intelligent Perception for Cyberspace Security, Nanchang 330013, China; 3. Network Supervision Detachment of Zhengzhou Public Security Bureau, Zhengzhou 450003, China; 4. Jiangxi Tourism and Commerce Vocational College, Nanchang 330100, China)
[1] SADR H, SOLEIMANDARABI M N, PEDRAM M M, et al. Unified topic-based semantic models: A study in computing the semantic relatedness of geographic terms[C]// 2019 5th International Conference on Web Research(ICWR). IEEE, 2019:134-140.
[2] WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]// 2017 IEEE International Conference on Intelligence and Security Informatics(ISI). IEEE, 2017:43-48.
[3] WANG P, CHEN X J, YE F, et al. A survey of techniques for mobile service encrypted traffic classification using deep learning[J]. IEEE Access, 2019,7:54024-54033.
[4] BAYAT N, JACKSON W, LIU D. Deep learning for network traffic classification[J]. arXiv preprint arXiv:2106.12693, 2021.
[5] PATHMAPERUMA M H, RAHULAMATHAVAN Y, DOGAN
S, et al. Deep learning for encrypted traffic classification and unknown data detection[J]. Sensors, 2022,22(19). DOI:10.48550/arXiv.2203.15501.
[6] REZAEI S, LIU X. Deep learning for encrypted traffic classification: An overview[J]. IEEE Communications Magazine, 2019,57(5):76-81.
[7] SADR H, PEDRAM M M, TESHNEHLAB M. A robust sentiment analysis method based on sequential combination of convolutional and recursive neural networks[J]. Neural Processing Letters, 2019,50:2745-2761.
[8] WANG Q, LIU S T, CHANUSSOT J, et al. Scene classification with recurrent attention of VHR remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018,57(2):1155-1167.
[9] CHEN Z T, HE K, LI J, et al. Seq2Img: A sequence-to-image based approach towards IP traffic classification using convolutional neural networks[C]// 2017 IEEE International Conference on Big Data(Big Data). IEEE, 2017:1271-1276.
[10] WANG W, SHENG Y Q, WANG J L, et al. HAST-IDS: Learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J]. IEEE Access, 2017,6:1792-1806.
[11] WANG P, YE F, CHEN X J, et al. Datanet: Deep learning based encrypted network traffic classification in SDN home gateway[J]. IEEE Access, 2018,6:55380-55391.
[12] LOPEZ-MARTIN M, CARRO B, SANCHEZ-ESGUEVILLAS
A, et al. Network traffic classifier with convolutional and recurrent neural networks for Internet of Things[J]. IEEE Access, 2017,5: 18042-18050.
[13] MAAROUF R, SATTAR D, MATRAWY A. Evaluating resilience of encrypted traffic classification against adversarial evasion attacks[C]// 2021 IEEE Symposium on Computers and Communications(ISCC). IEEE, 2021. DOI: 10.1109/ISCC53001.2021.9631407.
[14] YANG L X, FINAMORE A, JUN F, et al. Deep learning and traffic classification: Lessons learned from a commercial-grade dataset with hundreds of encrypted and zero-day applications[J]. arXiv preprint arXiv:2104.03182, 2021.
[15] SADR H, PEDRAM M M, TESHNEHLAB M. Convolutional neural network equipped with attention mechanism and transfer learning for enhancing performance of sentiment analysis[J]. Journal of AI and Data Mining, 2021,9(2):141-151.
[16] SCHAPIRE R E. The boosting approach to machine learning: An overview[M]// Nonlinear Estimation and Classification. Springer, 2003:149-171.
[17] KRAWCZYK B, WOŹNIAK M, SCHAEFER G. Cost-sensitive decision tree ensembles for effective imbalanced classification[J]. Applied Soft Computing, 2014,14:554-562.
[18] 华斌,张丽超,赵富强. 基于加权 MFCC 的音频检索[J]. 计算机工程与应用, 2015 (8):200-204.
[19] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. arXiv preprint arXiv:1706.05587, 2017.
[20] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Proceedings of the 2018 European Conference on Computer Vision(ECCV). Springer, 2018:801-818.
[21] 薛文龙,于炯,郭志琦,等. 基于特征融合卷积神经网络的端到端加密流量分类[J]. 计算机工程与应用, 2021,57(18):114-121.
[22] KUKAR M, KONONENKO I. Cost-sensitive learning with neural networks[C]// Proceedings of the 13th European Conference on Artificial Intelligence(ECAI). Springer, 1998,15:88-94.
[23] CHUNG Y A, LIN H T, YANG S W. Cost-aware pre-training for multiclass cost-sensitive deep learning[J]. arXiv preprint arXiv:1511.09337, 2015.
[24] KHAN S H, HAYAT M, BENNAMOUN M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017,29(8):3573-3587.
[25] DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related[C]// Proceedings of the 2nd International Conference on information Systems Security and Privacy(ICISSP). SCITEPress, 2016:407-414.
[26] LOTFOLLAHI M, ZADE S H R, SIAVOSHANI J M, et al. Deep packet: A novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020,24(3):1999-2012.
[27] OKONKWO Z, FOO E, LI Q, et al. A CNN based encrypted network traffic classifier[C]// Proceedings of the 2022 Australasian Computer Science Week. ACM, 2022:74-83.