Inshore Warship Detection Method Based on Multi-task Learning
(1. Aerospace Information Research Institute, Chinese Academy of Science, Beijing 100190, China; 2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of Network Information System Technology, Chinese Academy of Sciences, Beijing 100190, China)
LIU Xin-pin1, 2, 3, WANG Hong1, 3, ZHAO Liang-jin1, 3. Inshore Warship Detection Method Based on Multi-task Learning[J]. Computer and Modernization, 2024, 0(03): 29-33.
[1] 岳邦铮,韩松. 基于改进Faster R-CNN的SAR船舶目标检测方法[J]. 计算机与现代化, 2019(9):90-95.
[2] 赵玉蓉,郭会明,焦函,等. 融合混合域注意力的YOLOv4在船舶检测中的应用[J]. 计算机与现代化, 2021(9):75-82.
[3] 王长军,彭成,李勇. 复杂环境下的多特征融合船舶目标检测算法[J]. 计算机与现代化, 2022(11):81-88.
[4] 孙显,王智睿,孙元睿,等. AIR-SARShip-1.0:高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019,8(6):852-862.
[5] 王岳环,秦小娟,韦海萍,等. 基于港口匹配和海域分割的靠岸舰船检测方法[J]. 华中科技大学学报(自然科学版), 2017,45(10):95-99.
[6] 王彦情,马雷,田原. 光学遥感图像舰船目标检测与识别综述[J]. 自动化学报, 2011,37(9):1029-1039.
[7] 唐沐恩,林挺强,文贡坚. 遥感图像中舰船检测方法综述[J]. 计算机应用研究, 2011,28(1):29-36.
[8] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017,60(6):84-90.
[9] GIRSHICK R. Fast R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. 2015:1440-1448.
[10] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017,39(6):1137-1149.
[11] CAI Z W, VASCONCELOS N. Cascade R-CNN: Delving into high quality object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:6154-6162.
[12] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. 2017:2961-2969.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788.
[14] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017:7263-7271.
[15] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv preprint arXiv:1804.02767,2018.
[16] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv:2004.10934,2020.
[17] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// Proceedings of the IEEE European Conference on Computer Vision. 2016:21-37.
[18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017:2999-3007.
[19] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015:3431-3440.
[20] CHEN L C, HERMANS A, PAPANDREOU G, et al. Masklab: instance segmentation by refining object detection with semantic and direction features[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:4013-4022.
[21] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018:8759-8768.
[22] CHEN K, PANG J M, WANG J Q, et al. Hybrid task cascade for instance segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019:4974-4983.
[23] 张冬冬,王春平,付强. 基于改进YOLOv4-tiny的舰船关重部位检测算法[J]. 无线电工程, 2023,5(3):628-635.
[24] 宋志娜,李莎,杨建明,等. 基于特征和区域定位增强的遥感舰船目标检测[J]. 计算机工程, 2023(8):257-264.
[25] WANG M H, LI Q P, et al. SCAF-Net: Scene context attention-based fusion network for vehicle detection in aerial imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022,19:1-5.
[26] TAO C, LI M, LI Y S, et al. Scene context-driven vehicle detection in high-resolution aerial images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(10):7339-7351.
[27] WEI H R, ZHANG Y, SUN X, et al. Oriented objects as pairs of middle lines[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020,169(10):268-279.