(1. Laser Institute, Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jining 27200, China; 2. Jining Keli Optoelectronics Industry Co., Ltd, Jining 27200, China; 3. College of Electronic Information, Qingdao University, Qingdao 260000, China)
LI An-ran1, FANG Yang-yang2, CHENG Hui-jie2, ZHANG Shen-shen2, YAN Jin-qiang3, YU Teng3, YANG Guo-wei3. Bi-stream Transformer for Single Image Dehazing[J]. Computer and Modernization, 2024, 0(03): 78-84.
[1] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(12):2341-2346.
[2] ZHU Q S, MAI J M, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015,24(11):3522-3533.
[3] ZHANG H, PATEL V M. Densely connected pyramid dehazing network[C]// IEEE Conference on Computer Vision and Pattern Recognitio. 2018:3194-3204.
[4] CAI B L, XU X M, JIA K, et al. DehazeNet: An end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016,25(11):5187-5198.
[5] LI B Y, PENG X L, WANG Z Y, et al. AOD-Net: All-in-one dehazing network[C]// 2017 IEEE International Conference on Computer Vision (ICCV). 2017:511-523.
[6] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
[7] DONG H, PAN J S, XIANG L, et al. Multi-scale boosted dehazing network with dense feature fusion[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020:2157-2167.
[8] QIN X, WANG Z L, BAI Y C, et al. FFA-Net: Feature fusion attention network for single image dehazing[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020:11908-11915.
[9] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems. 2017:5998-6008.
[10] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[C]// Association for Computational Linguistics. 2018:4171-4186.
[11] DEHOUCHE N. Plagiarism in the age of massive Generative Pre-trained Transformers (GPT-3): “The best time to act was yesterday. The next best time is now.”[J]. Ethics in Science and Environmental Politics, 2021,21(11):17-23.
[12] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021:9992-10002.
[13] CHEN H T, WANG Y, GUO T, et al. Pre-trained image processing transformer[C]// IEEE International Conference on Computer Vision and Pattern Recognition. 2021:20-25.
[14] CHEN M, ZANG S R, AI Z H, et al. RFA-Net: Residual feature attention network for fine-grained image inpainting[J]. Engineering Applications of Artificial Intelligence, 2023,119. DOI: 10.1016/j.engappai.2022.105814.
[15] 张宇,李翔,曹焕年,等. 基于多解码器的U型网络在图像去雾中的应用研究[J]. 计算机科学, 2021,48(6):1234-1242.
[16] 王琦,杨鹏,张继兴,等. 图像去雾中基于多层级特征融合的U型网络研究[J]. 计算机应用, 2021,41(8):123-130.
[17] ZHANG X Q, WANG T, WANG J X, et al. Pyramid channel-based feature attention network for image dehazing[J]. Computer Vision and Image Understanding, 2020,197-198(9). DOI: 10.1016/j.cviu.2020.103003.
[18] WANG Z D, CUN X D, BAO J M, et al. Uformer: A general u-shaped transformer for image restoration[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022:17683-17693.
[19] SONG Y D, HE Z Q, QIAN H, et al. Vision transformers for single image dehazing[J]. IEEE Transactions on Image Processing, 2023,32:1927-1941.
[20] 李明昊,王军,陈宇,等. 基于dehazeformer块的单幅图像去雾方法研究[J]. 电子学报, 2021,49(6):1281-1288.
[21] 张建国,李文娟,王丽,等. 基于rescalenorm和leakyrelu的图像去雾方法研究[J]. 计算机工程与应用, 2021,57(15):145-150.
[22] 陈伟祥,李明峰,潘琳瑛,等. 一种基于物理先验和深度信息的图像去雾方法研究[J]. 中国图象图形学报, 2021,26(8):1174-1185.
[23] 张华,周玲,刘晓宇,等. 基于深度学习和传统先验的图像去雾方法研究[J]. 中国图像图形学报, 2020,25(4):515-524.
[24] 柳建宇,张明亮,孙福臣,等. 基于稠密卷积的先验编码器在图像去雾中的应用研究[J]. 电子学报, 2021,49(8):1234-1242.
[25] 王丽丽,李刚,刘晓宇,等. 基于残差结构的稠密卷积在图像去雾中的特征提取研究[J]. 计算机工程与应用, 2021,57(10):123-130.
[26] LI B Y, REN W Q, FU D P, et al. Reside: A benchmark for single image dehazing[J]. IEEE Transactions on Image Processing, 2018,28(1):492-505.
[27] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.
[28] REN W Q, LIU S, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks[C]// European Conference on Computer Vision. 2016:154-169.
[29] REN W Q, MA L, ZHANG J W, et al. Gated fusion network for single image dehazing[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2018:3253-3261.
[30] CHEN D D, HE M M, FAN Q N, et al. Gated context aggregation network for image dehazing and deraining[C]// IEEE Winter Conference on Applications of Computer Vision. 2019:1375-1383.
[31] MEI K F, JIANG A W, LI J C, et al. Progressive feature fusion network for realistic image dehazing[C]// Asian Conference on Computer Vision. 2018:203-215.
[32] LIU X H, MU Y R, SHI Z H, et al. Griddehazenet: Attention-based multiscale network for image dehazing[C]// IEEE International Conference on Computer Vision. 2019:7314-7323.
[33] LIU X, SUGANUMA M, SUN Z, et al. Dual residual networks leveraging the potential of paired operations for image restoration[C]// IEEE Conference on Computer Vision and Pattern Recognition. 2019:7007-7016.
[34] WU H Y, QU Y Y, LIN S H, et al. Contrastive learning for compact single image dehazing[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021:10551-10560.
[35] YANG Y, WANG C Y, LIU R S, et al. Self-augmented unpaired image dehazing via density and depth decomposition[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022:2037-2046.
[36] TU Z Z, TALETI H, ZHANG H, et al. Maxim: Multi-axis mlp for image processing[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022:5769-5780.
[37] HONG M, LIU J Z, LI C H, et al. Uncertainty-driven dehazing network[C]// AAAI Conference on Artificial Intelligence. 2022:906-913.
[38] LIN C Y, RONG X W, YU X Y. MSAFF-Net: Multiscale attention feature fusion networks for single image dehazing and beyond[J]. IEEE Transactions on Multimedia, 2023,25(3):3089-3110.
[39] ANCUTI C, ANCUTI C A, TIMOFE R. Ntire 2018 challenge on image dehazing: Methods and results[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2018:1004-1014.
[40] FATTAL R. Single image dehazing[J]. ACM Transactions on Graphics (TOG), 2008,27(3):1-9.
[41] FATTAL R. Dehazing using color-lines[J]. ACM Transactions on Graphics (TOG), 2014,34(1):1-14.