DU Han-yu, WEI Yan, TANG Bao-xiang, LIAO Heng-feng, YE Si-jia. Low-light Image Enhancement Based on Dual Attention Residual Blocks[J]. Computer and Modernization, 2024, 0(03): 85-91.
[1] CUI Z T, QI G J, GU L, et al. Multitask AET with orthogonal tangent regularity for dark object detection[EB/OL]. (2022-05-06)[2023-01-16]. https://arxiv.org/abs/2205.
03346.
[2] TAN X, XU K, CAO Y et al. Night-time scene parsing with a large real dataset[J]. IEEE Transactions on Image Processing, 2021,30:9085-9098.
[3] 李庆忠,刘清. 基于小波变换的低照度图像自适应增强算法[J]. 中国激光, 2015,42(2):272-278.
[4] 张航瑛,王雪琦,王华英,等. 基于明度分量的Retinex-Net图像增强改进方法[J]. 物理学报, 2022,71(11):101-109.
[5] MA L, MA T Y, LIU R S, et al. Toward fast, flexible,and robust low-light image enhancement [EB/OL]. (2022-04-21)[2023-01-16]. https://arxiv.org/abs/2204.10137.
[6] XU X G, WANG R X, FU C W, et al. SNR-aware low-light image enhancement[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:17693-17703.
[7] YANG W H, WANG S Q, FANG Y M, et al. Band representation-based semi-supervised low-light image enhancement: Bridging the gap between signal fidelity and perceptual quality[J]. IEEE Transactions on Image Processing, 2021,30:3461-3473.
[8] CHANG Y C, CHANG C M. A simple histogram modification scheme for contrast enhancement[J]. IEEE Transactions on Consumer Electronics, 2010,56(2):737-742.
[9] PIZER S M, AMBURN E P, AUSTIN J D, et al. Adaptive histogram equalization and its variations[J]. Computer Vision, Graphics, and Image Processing, 1987,39(3):355-368.
[10] JOBSOM D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997,6(3):451-462.
[11] JOBSOM D J, RAHMAN Z, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image processing, 1997,6(7):965-976.
[12] RAHMAN Z, JOBSOM D J, WOODELL G A. Retinex processing for automatic image enhancement[J]. Journal of Electronic Imaging, 2004,13(1):100-110.
[13] LORE K G, AKINTAYO A, SARKAR S. LLNet: A deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017,61:650-662.
[14] WEI C, WANG W J, YANG W H, et al. Deep retinex decomposition for low-light enhancement[C]// Proceedings of the 29th British Machine Vision Conference. BMVA Press, 2018:155-167.
[15] WANG W J, CHEN W, YANG W H, et al. GLADNet: Low-light enhancement network with global awareness[C]// 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018). IEEE, 2018:751-755.
[16] LV F F, LU F, WU J H, et al. MBLLEN: Low-light image/video enhancement using CNNs[C]// Proceedings of British Machine Vision Conference. BMV Press, 2018.
[17] JIANG Y F, GONG X Y, LIU D, et al. EnlightenGAN: Deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021,30:2340-2349.
[18] GUO C L, LI C Y, GUO J C, et al. Zero-reference deep curve estimation for low-light image enhancement[C]// Proceedings of 2020 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2020:1777-1786.
[19] LI C Y, GUO C L, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Software Engineering, 2021,44(8):4225-4238.
[20] KWON D, KIM G, KWON J. DALE: Dark region-aware low-light image enhancement[J]. arXiv preprint arXiv:2008.12493, 2020.
[21] ZAMIR S W, ARORA A, KHAN S H, et al. Learning enriched features for real image restoration and enhancement[C]// 2020 European Conference on Computer Vision (ECCV). Springer, 2020:154-171.
[22] ZHENG C J, SHI D M, SHI W T. Adaptive unfolding total variation network for low-light image enhancement[C]// 2021 IEEE/CVF International Conference on Computer Vision. IEEE, 2021:4419-4428.
[23] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016:770-778.
[24] 潘晓英,魏苗,王昊等. 多尺度融合残差编解码器的低照度图像增强方法[J]. 计算机辅助设计与图形学学报, 2022,34(1):104-112.
[25] HU J, LI S, ALBANIE S, et al. Squeeze-and-excitation Networks[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2020,42(8):2011-2023.
[26] 谌贵辉,林瑾瑜,李跃华,等. 注意力机制下的多阶段低照度图像增强网络[J]. 计算机应用, 2023,43(2):552-559.
[27] TANG S, WANG Y, CHEN Q, et al. Low-light image and video enhancement using deep learning: A survey[C]// 2021 IEEE International Conference on Image Processing (ICIP). IEEE, 2021:1336-1340.
[28] ZHAO H, GALLO O, FROSIO l, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017,3(1):47-57.
[29] BYCHKOVSKY V, PARIS S, CHAN E, et al. Learning photographic global tonal adjustment with a database of input/output image pairs[C]// 2011 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2011:97-104.
[30] WU W H, WENG J, ZHANG P P, et al. URetinex-Net: Retinex-based deep unfolding network for low-light image enhancement[C]// 2022 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2022:5901-5910.
[31] MA L, MA T Y, LIU R S, et al. Toward fast, flexible, and robust low-light image enhancement[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022:5627-5636.