Hand Hygiene Action Quality Assessment Based on Multi-source Action Information
(1. School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China;
2. Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China;
3. Anhui University, Hefei 230039, China)
LI De-kang, TANG Jin, WANG Fu-tian, TU Zi-jian, . Hand Hygiene Action Quality Assessment Based on Multi-source Action Information[J]. Computer and Modernization, 2023, 0(12): 87-93.
[1] 张园. 扎根理论视角下的公立医院感染管理影响因素研究——以Z三甲医院为例[D]. 蚌埠:安徽财经大学, 2020.
[2] BEARMAN G, DOLL M, COOPER K, et al. Hospital infection prevention: How much can we prevent and how hard should we try?[J]. Current Infectious Disease Reports, 2019,21(1). DOI: 10.1007/s11908-019-0660-2.
[3] 李光香,程伟荣. 六步洗手法对降低手细菌污染的临床观察[J]. 中国护理管理, 2005,5(1):55-56.
[4] LLORCA D F, PARRA I, SOTELO M A, et al. A vision-based system for automatic hand washing quality assessment[J]. Machine Vision and Applications, 2011,22(2):219-234.
[5] ZHONG C Z, REIBMAN A R, MINA H A, et al. Designing a computer-vision application: A case study for hand-hygiene assessment in an open-room environment[J]. Journal of Imaging, 2021,7(9). DOI: 10.3390/jimaging7090170.
[6] LI C L, ZHU Q W, LIU T B, et al. Hand hygiene assessment via joint step segmentation and key action scorer[J]. arXiv preprint arXiv:2209.12221, 2022.
[7] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:4724-4733.
[8] BAI S J, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv preprint arXiv:1803.01271, 2018.
[9] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, 2015.
[10] OORD A V D, DIELEMAN S, ZEN H, et al. WaveNet: A generative model for raw audio[J]. arXiv preprint arXiv:1609.03499, 2016.
[11] LEA C, FLYNN M D, VIDAL R, et al. Temporal convolutional networks for action segmentation and detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:1003-1012.
[12] LEI P, TODOROVIC S. Temporal deformable residual networks for action segmentation in videos[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2018:6742-6751.
[13] FARHA Y A, GALL J. MS-TCN: Multi-stage temporal convolutional network for action segmentation[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:3570-3579.
[14] ISHIKAWA Y, KASAI S, AOKI Y, et al. Alleviating over-segmentation errors by detecting action boundaries[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). 2021:2321-2330.
[15] WANG Z Z, GAO Z T, WANG L M, et al. Boundary-aware cascade networks for temporal action segmentation[C]// Proceedings of the 2020 European Conference on Computer Vision. 2020:34-51.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:6000-6010.
[17] YI F Q, WEN H Y, JIANG T T. ASFormer: Transformer for action segmentation[J]. arXiv preprint arXiv:2110.08568, 2021.
[18] PIRSIAVASH H, VONDRICK C, TORRALBA A. Assessing the quality of actions[C]// Proceedings of the 2014 European Conference on Computer Vision. 2014:556-571.
[19] LI Z Q, HUANG Y F, CAI M J, et al. Manipulation-skill assessment from videos with spatial attention network[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). 2019:4385-4395.
[20] PARMAR P, TRAN MORRIS B. Learning to score olympic events[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2017:76-84.
[21] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). 2015:4489-4497.
[22] ZENG L A, HONG F T, ZHENG W S, et al. Hybrid dynamic-static context-aware attention network for action assessment in long videos[C]// Proceedings of the 28th ACM International Conference on Multimedia. 2020:2526-2534
[23] YU X M, RAO Y M, ZHAO W L, et al. Group-aware contrastive regression for action quality assessment[C]// Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV). 2021:7919-7928.
[24] XU C M, FU Y W, ZHANG B, et al. Learning to score figure skating sport videos[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020,30(12):4578-4590.
[25] XU A C, ZENG L A, ZHENG W S. Likert scoring with grade decoupling for long-term action assessment[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022:3222-3231.
[26] LIKERT R. A technique for the measurement of attitudes[J]. Archives of Psychology, 1932.
[27] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.