3D-SPRNet: Segmentation Model of Gallbladder Cancer Based on Parallel Decoder and Double Attention Mechanism
(1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China;
2. Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China)
ZHANG Hao-yang, YIN Zi-ming, LE Jun-yi, SHEN Da-cong, SHU Yi-jun, YANG Zi-yi, . 3D-SPRNet: Segmentation Model of Gallbladder Cancer Based on Parallel Decoder and Double Attention Mechanism[J]. Computer and Modernization, 2023, 0(12): 59-66.
[1] RAWLA P, SUNKARA T, THANDRA K C, et al. Epidemiology of gallbladder cancer[J]. Clinical and Experimental Hepatology, 2019,5(2):93-102.
[2] 李永盛,李茂岚,刘颖斌. 胆囊癌相关基础研究现状与展望[J]. 中国实用外科杂志, 2021,41(1):52-55.
[3] FITZMAURICE C, ABATE D, ABBASI N, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study[J]. JAMA Oncology, 2019,5(12):1749-1768.
[4] KRELL R W, WEI A C. Gallbladder cancer: Surgical management[J]. Chinese Clinical Oncology, 2019,8(4). DOI: 10.21037/cco.2019.06.06.
[5] MAJI D, SIGEDAR P, SINGH M. Attention res-UNet with guided decoder for semantic segmentation of brain tumors[J]. Biomedical Signal Processing and Control, 2022,71(Part A). DOI: 10.1016/j.bspc.2021.103077.
[6] LEE H, PARK J, HWANG J Y. Channel attention module with multiscale grid average pooling for breast cancer segmentation in an ultrasound image[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020,67(7):1344-1353.
[7] FAN D P, JI G P, ZHOU T, et al. PraNet: Parallel reverse attention network for polyp segmentation[C]// Proceedings of the 2020 International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020:263-273.
[8] HUANG Y F, XU Z Z, YAN C R. Automatic gallbladder location and segmentation based on anatomical knowledge[J]. Applied Mechanics and Materials, 2014,556-562:4697-4700.
[9] LIAN J, MA Y D, MA Y R, et al. Automatic gallbladder and gallstone regions segmentation in ultrasound image[J]. International Journal of Computer Assisted Radiology and Surgery, 2017,12(4):553-568.
[10] SHEN N Y, WANG Z Y, LI J, et al. Multi-organ segmentation network for abdominal CT images based on spatial attention and deformable convolution[J]. Expert Systems with Applications, 2023,211. DOI: 10.1016/j.eswa.2022.
118625.
[11] 金哲川,李起,张东,等. 基于nnU-Net的临床影像组学模型对胆囊癌预后的预测价值[J]. 中华消化外科杂志, 2022,21(5):656-664.
[12] 尹梓名,刘颖斌,束翌俊,等. 基于深度神经网络Mask R-CNN胆囊癌辅助识别系统临床应用价值研究[J]. 中国实用外科杂志, 2021,41(3):310-314.
[13] BASU S, GUPTA M, RANA P, et al. Surpassing the human accuracy: Detecting gallbladder cancer from USG images with curriculum learning[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2022:20854-20864.
[14] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016:770-778.
[15] ULYANOV D, VEDALDI A, LEMPITSKY V. Improved texture networks: Maximizing quality and diversity in feed-forward stylization and texture synthesis[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017:4105-4113.
[16] XU J, LI Z S, DU B W, et al. Reluplex made more practical: Leaky ReLU[C]// Proceedings of the 2020 IEEE Symposium on Computers and communications (ISCC). 2020. DOI: 10.1109/ISCC50000.2020.9219587.
[17] ABRAHAM N, KHAN N M. A novel focal Tversky loss function with improved attention U-Net for lesion segmentation[C]// Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019). 2019:683-687.
[18] CAI Y T, WANG Y. MA-Unet: An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation[C]// Proceedings of the 3rd International Conference on Electronics and Communication; Network and Computer Technology (ECNCT 2021). 2022:205-211.
[19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2018:7132-7141.
[20] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]// Proceedings of the 2014 European Conference on Computer Vision (ECCV). 2014:818-833.
[21] WU Z, SU L, HUANG Q M. Cascaded partial decoder for fast and accurate salient object detection[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019:3902-3911.
[22] LIU S T, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:404-419.
[23] CHEN S H, TAN X L, WANG B, et al. Reverse attention for salient object detection[C]// Proceedings of the 2018 European Conference on Computer Vision (ECCV). 2018:236-252.
[24] CICEK O, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: Learning dense volumetric segmentation from sparse annotation[C]// Proceedings of the 2016 International Conference on Medical Image Computing and Computer-Assisted Intervention. 2016:424-432.
[25] YU L Q, YANG X, CHEN H, et al. Volumetric convNets with mixed residual connections for automated prostate segmentation from 3D MR images[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017:66-72.
[26]RUIZ J, MAHMUD M, MODASSHIR M, et al. 3D DenseNet ensemble in 4-way classification of Alzheimer’s disease[C]// Proceedings of the 2020 International Conference on Brain Informatics. 2020:85-96.