Course Recommendation Method Combining Time Correlation Degree and Course#br#
Collocation Degree
(1. College of Mathematics and Computer Science, Jilin Normal University, Siping 136000, China;
2. Jilin Seismological Bureau, Changchun 130000, China)
LIU Yu-cheng, HE Qi, DONG Yan-hua, WANG Xiao-yu. Course Recommendation Method Combining Time Correlation Degree and Course#br#
Collocation Degree
[J]. Computer and Modernization, 2023, 0(12): 53-58.
[1] LU J L. A survey of online course recommendation techniques[J]. Open Journal of Applied Sciences, 2022,12(1):134-154.
[2] 郑庆华,董博,钱步月,等. 智慧教育研究现状与发展趋势[J]. 计算机研究与发展, 2019,56(1):209-224.
[3] 尚燕敏,曹亚男,刘燕兵. 基于异构社交网络信息和内容信息的事件推荐[J]. 软件学报, 2020,31(4):1212-1224.
[4] ZHANG Y, YANG Q. A survey on multi-task learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2022,34(12):5586-5609.
[5] WANG S Y, LI Y P. Learning preference recommendation with heterogeneous graph neural networks in MOOC[C]// Proceedings of the 2021 4th International Conference on Artificial Intelligence and Pattern Recognition. 2021:629-635.
[6] TANG C L, LIAO J X, WANG H C, et al. ConceptGuide: Supporting online video learning with concept map-based recommendation of learning path[C]// Proceedings of the Web Conference 2021. 2021:2757-2768.
[7] TIAN G, WANG Q B, WANG J, et al. Leveraging contextual information for cold-start Web service recommendation[J]. Concurrency and Computation: Practice and Experience, 2019,31(17). DOI: 10.1002/cpe.5195.
[8] LIU K, LI X Y, ZHU Z H, et al. Factor-bounded nonnegative matrix factorization[J]. ACM Transactions on Knowledge Discovery from Data, 2021,15(6). DOI: 10.1145/3451395.
[9] JIN C. Dropout prediction model in MOOC based on clickstream data and student sample weight[J]. Soft Computing, 2021,25(14):8971-8988.
[10] WADBUDE R, GUPTA V, MEKALA D, et al. User bias removal in review score prediction[C]// Proceedings of the 2018 ACM India Joint International Conference on Data Science and Management of Data. 2018:175-179.
[11] 丁勇,陈夕,蒋翠清,等. 一种融合网络表示学习与XGBoost的评分预测模型[J]. 数据分析与知识发现, 2020,4(11):52-62.
[12] LI X, LI X, TANG J T, et al. Improving deep item-based collaborative filtering with Bayesian personalized ranking for MOOC course recommendation[C]// Proceedings of the 2020 International Conference on Knowledge Science, Engineering and Management. 2020:247-258.
[13] 胡园园,姜文君,任德盛,等. 一种结合用户适合度和课程搭配度的在线课程推荐方法[J]. 计算机研究与发展, 2022,59(11):2520-2533.
[14] TAN J D, CHANG L, LIU T Y, et al. Attentional autoencoder for course recommendation in MOOC with course relevance[C]// Proceedings of the 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC). 2020:190-196.
[15] LIU H L, XU Z M, ZHANG Q Q, et al. Integrating users' long- and short-term preferences for session-based recommendation[C]// Proceedings of the 2022 IEEE 25th International Conference on Computer Supported Cooperative Work in Design (CSCWD). 2022:611-616.
[16] ZHANG S, TAY Y, YAO L N, et al. Next item recommendation with self-attentive metric learning[C]// Proceedings of the AAAI 2019 Workshop on Recommender Systems and Natural Language Processing. 2019.
[17] GONG J B, WANG S, WANG J L, et al. Attentional graph convolutional networks for knowledge concept recommendation in MOOCs in a heterogeneous view[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020:79-88.
[18] ZHANG M Q, WU S, GAO M, et al. Personalized graph neural networks with attention mechanism for session-aware recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022,34(8):3946-3957.
[19] DING Y, LI X. Time weight collaborative filtering[C]// Proceedings of the 14th ACM International Conference on Information and Knowledge Management. 2005:485-492.
[20] 杨洁霞. 使用Apriori算法确定学生所选课程间的关联关系[J]. 中山大学学报论丛, 2004,24(1):180-184.
[21] PIZZATO L A, SILVESTRINI C. Stochastic matching and collaborative filtering to recommend people to people[C]// Proceedings of the 5th ACM Conference on Recommender Systems. 2011:341-344.
[22] BELLOGIN A, CANTADOR I, DIEZ F, et al. An empirical comparison of social, collaborative filtering, and hybrid recommenders[J]. ACM Transactions on Intelligent Systems and Technology, 2013,4(1). DOI: 10.1145/2414425.2414439.
[23] ZHANG W, WANG J Y, FENG W. Combining latent factor model with location features for event-based group recommendation[C]// Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2013:910-918.
[24] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. 2009:452-461.
[25] YU R L, ZHANG Y Z, YE Y Y, et al. Multiple pairwise ranking with implicit feedback[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018:1727-1730.
[26] WANG H W, ZHANG F Z, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]// Proceedings of the 28th International Conference on World Wide Web. 2019:2000-2010.