Prediction Method of Foundation Pit Displacement Based on Spatiotemporal Attention Mechanism#br#
(1. School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China;
2. School of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China;3. Suzhou Institute of Smart City, Suzhou University of Science and Technology, Suzhou 215009, China; 4. Jiangsu Smart Engineering Laboratory of Big Data, Jiangsu Key Laboratory of Computer Information Processing Technology, Soochow University, Suzhou 215006, China)
WANG Yu-li, YANG Chang-song, QIU Jing, WEI Jun, WU Hong-jie, . Prediction Method of Foundation Pit Displacement Based on Spatiotemporal Attention Mechanism#br#[J]. Computer and Modernization, 2023, 0(05): 39-45.
[1] HU Z. Analysis and research on support design and deformation monitoring of deep foundation pit[J]. Scientific Journal of Intelligent Systems Research, 2022,4(5):490-494.
[2] ZHANG X H, WANG X W, XU Y S. Influence of filter tube of pumping well on groundwater drawdown during deep foundation pit dewatering[J]. Water, 2021,13(22). DOI: 10.3390/w13223297.
[3] LV Y, LIU T T, MA J, et al. Retraction note: Study on settlement prediction model of deep foundation pit in sand and pebble strata based on grey theory and BP neural network[J]. Arabian Journal of Geosciences, 2022,15(8). DOI: 10.1007/s12517-022-10082-w.
[4] 陶勇. 江北新区基坑群分坑施工时序与基坑变形研究[D]. 南京:南京林业大学, 2020.
[5] LI H L, ZHAO Z Z, DU X. Research and application of deformation prediction model for deep foundation pit based on LSTM[J]. Wireless Communications and Mobile Computing, 2022. DOI: 10.1155/2022/9407999.
[6] 许宁. 基于LSTM的深基坑变形预测模型研究与应用[D]. 赣州:江西理工大学, 2019.
[7] 郭庆军,贾哲,景银博. 基于有限元与Elman神经网络的基坑变形预测[J]. 中国科技论文, 2019,14(10):1072-1077.
[8] DENG Y S, PENG C P, SU J L, et al. Reliability analysis for retaining pile in foundation pit based on Bayesian principle[J]. Computer Modeling in Engineering & Sciences, 2022,130(2):1135-1148.
[9] DENG R, ZHOU L. Optimising the supporting structure of a bridge’s foundation pit based on hybrid neural network[J]. International Journal of Critical Infrastructures, 2022,18(2):159-171.
[10] 廖瑛,孙李. 基于三角模糊数截集的基坑支护结构稳定性分析[J]. 苏州科技大学学报(自然科学版), 2021,38(3):31-36.
[11] 刘威,刘尚,白润才,等. 互学习神经网络训练方法研究[J]. 计算机学报, 2017,40(6):1291-1308.
[12] 易黎,肖青秀,汤鲲. 基于双层注意力机制的深度学习电影推荐系统[J]. 计算机与现代化, 2018(11):109-114.
[13] SONG S J, LAN C L, XING J L, et al. Spatio-temporal attention-based LSTM networks for 3D action recognition and detection[J]. IEEE Transactions on Image Processing, 2018,27(7):3459-3471.
[14] 饶海兵,朱苏磊,杨春夏. 基于空时特征融合和注意力机制的网络入侵检测模型[J]. 计算机与现代化, 2022(6):116-121.
[15] TIAN C J, ZHU X N, HU Z, et al. Deep spatial-temporal networks for crowd flows prediction by dilated convolutions and region-shifting attention mechanism[J]. Applied Intelligence, 2020,50(10):3057-3070.
[16] 黄立峰,庄文梓,廖泳贤,等. 一种基于进化策略和注意力机制的黑盒对抗攻击算法[J]. 软件学报, 2021,32(11):3512-3529.
[17] XIA L M, LI Z M. A new method of abnormal behavior detection using LSTM network with temporal attention mechanism[J]. The Journal of Supercomputing, 2020,77(4):3223-3241.
[18] XU T L, WANG Y B, CHEN K. Tailings saturation line prediction based on genetic algorithm and BP neural network[J]. Journal of Intelligent & Fuzzy Systems, 2016,30(4):1947-1955.
[19] 王赞,樊向宇,邹雨果,等. 一种基于遗传算法的多缺陷定位方法[J]. 软件学报, 2016,27(4):879-900.
[20] WU J J. Prediction of foundation pit settlement based on BP neural network[J]. World Scientific Research Journal, 2021,7(7):290-297.
[21] 代才,石晓琪. 基于新的适应度函数和多搜索策略的高维多目标进化算法[J]. 计算机应用研究, 2020,37(1):85-88.
[22] LUO C, JIANG Z P, ZHENG Y J. A novel reconstructed training-set SVM with roulette cooperative coevolution for financial time series classification[J]. Expert Systems with Applications, 2019,123:283-298.
[23] WANG L, BI X H. Risk assessment of knowledge fusion in an innovation ecosystem based on a GA-BP neural network[J]. Cognitive Systems Research, 2021,66:201-210.
[24] LIU J Y, Wang H X, SUN Y Y, et al. Real-coded quantum-inspired genetic algorithm-based BP neural network algorithm[J]. Mathematical Problems in Engineering, 2015. DOI: 10.1155/2015/571295.
[25] XU J C, JIANG Y, YANG C B. Landslide displacement prediction during the sliding process using XGBoost, SVR and RNNs[J]. Applied Sciences, 2022,12(12). DOI: 10.3390/app12126056.
[26] YU Y Z, QIU Z B, LIAO H S, et al. A method based on multi-network feature fusion and random forest for foreign objects detection on transmission lines[J]. Applied Sciences, 2022,12(10). DOI: 10.3390/app12104982.
[27] 李煜,冯翱,邹书蓉. 基于改进k-近邻的直推式支持向量机学习算法[J]. 计算机与现代化, 2018(4):22-25.